日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings

Tigges, J., Churkina, G., & Lakes, T. (2017). Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings. Urban Ecosystems, 20(1), 97-111. doi:10.1007/s11252-016-0585-6.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Tigges, Jan1, 著者
Churkina, Galina2, 著者              
Lakes, Tobia1, 著者
所属:
1External Organizations, ou_persistent22              
2IASS Institute for Advanced Sustainability Studies Potsdam, ou_96022              

内容説明

表示:
非表示:
キーワード: Climate change mitigation, Urban ecosystem services, Uncertainty, Urban remote sensing, Individual tree detection, Tree species composition
 要旨: Vegetation has gained importance in respective debates about climate change mitigation and adaptation in cities. Although recently developed remote sensing techniques provide necessary city-wide information, a sufficient and consistent city-wide information of relevant urban ecosystem services, such as carbon emissions offset, does not exist. This study uses city-wide, high-resolution, and remotely sensed data to derive individual tree species information and to estimate the above-ground carbon storage of urban forests in Berlin, Germany. The variance of tree biomass was estimated using allometric equations that contained different levels of detail regarding the tree species found in this study of 700 km2, which had a tree canopy of 213 km2. The average tree density was 65 trees/ha per unit of tree cover and a range from 10 to 40 trees/ha for densely urban land cover. City-wide estimates of the above-ground carbon storage ranged between 6.34 and 7.69 tC/ha per unit of land cover, depending on the level of tree species information used. Equations that did not use individually localized tree species information undervalued the total amount of urban forest carbon storage by up to 15 %. Equations using a generalized estimate of dominant tree species information provided rather precise city-wide carbon estimates. Concerning differences within a densely built area per unit of land cover approaches using individually localized tree species information prevented underestimation of mid-range carbon density areas (10–20 tC/ha), which were actually up to 8.4 % higher, and prevented overestimation of very low carbon density areas (0–5 tC/ha), which were actually up to 11.4 % lower. Park-like areas showed 10 to 30 tC/ha, whereas land cover of very high carbon density (40–80 tC/ha) mostly consisted of mixed peri-urban forest stands. Thus, this approach, which uses widely accessible and remotely sensed data, can help to improve the consistency of forest carbon estimates in cities.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2016-122017
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: -
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Urban Ecosystems
種別: 学術雑誌, E14, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 20 (1) 通巻号: - 開始・終了ページ: 97 - 111 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.rifs-potsdam.de/cone/journals/resource/20161205b