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Abstract. Combustion of fuels in the residential sector for

cooking and heating results in the emission of aerosol and

aerosol precursors impacting air quality, human health, and

climate. Residential emissions are dominated by the combus-

tion of solid fuels. We use a global aerosol microphysics

model to simulate the impact of residential fuel combus-

tion on atmospheric aerosol for the year 2000. The model

underestimates black carbon (BC) and organic carbon (OC)

mass concentrations observed over Asia, Eastern Europe, and

Africa, with better prediction when carbonaceous emissions

from the residential sector are doubled. Observed seasonal

variability of BC and OC concentrations are better simu-

lated when residential emissions include a seasonal cycle.

The largest contributions of residential emissions to annual

surface mean particulate matter (PM2.5) concentrations are

simulated for East Asia, South Asia, and Eastern Europe.

We use a concentration response function to estimate the

human health impact due to long-term exposure to ambient

PM2.5 from residential emissions. We estimate global an-

nual excess adult (> 30 years of age) premature mortality

(due to both cardiopulmonary disease and lung cancer) to be

308 000 (113 300–497 000, 5th to 95th percentile uncertainty

range) for monthly varying residential emissions and 517 000

(192 000–827 000) when residential carbonaceous emissions

are doubled. Mortality due to residential emissions is great-

est in Asia, with China and India accounting for 50 % of

simulated global excess mortality. Using an offline radiative

transfer model we estimate that residential emissions exert

a global annual mean direct radiative effect between −66

and +21 mW m−2, with sensitivity to the residential emis-

sion flux and the assumed ratio of BC, OC, and SO2 emis-

sions. Residential emissions exert a global annual mean first

aerosol indirect effect of between −52 and −16 mW m−2,

which is sensitive to the assumed size distribution of car-

bonaceous emissions. Overall, our results demonstrate that

reducing residential combustion emissions would have sub-

stantial benefits for human health through reductions in am-

bient PM2.5 concentrations.
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1 Introduction

Combustion of fuels within the household for cooking and

heating, known as residential fuel combustion, is an impor-

tant source of aerosol emissions with impacts on air quality

and climate (Ramanathan and Carmichael, 2008; Lim et al.,

2012). In most regions, residential emissions are dominated

by the combustion of residential solid fuels (RSFs, see Ta-

ble A1 for list of acronyms used in the study) such as wood,

charcoal, agricultural residue, animal waste, and coal. Nearly

3 billion people, mostly in the developing world, depend on

the combustion of RSFs as their primary energy source (Bon-

jour et al., 2013). RSFs are usually burnt in simple stoves

or open fires with low combustion efficiencies, resulting in

substantial emissions of aerosol. It has been suggested that

reducing RSF emissions would be a fast way to mitigate cli-

mate and improve air quality (UNEP, 2011), but the climate

impacts of RSF emissions are uncertain (Bond et al., 2013).

Whilst it is clear that RSF combustion has substantial ad-

verse impacts on human health through poor indoor air qual-

ity, there have been few studies quantifying the impacts on

outdoor air quality and human health. Here, we use a global

aerosol microphysics model to estimate the impacts of resi-

dential fuel combustion on atmospheric aerosol, climate, and

human health.

Residential emissions due to the small-scale combustion

of biomass and fossil fuels used for cooking, heating, light-

ing, and auxiliary engines include black carbon (BC), par-

ticulate organic matter (POM), primary inorganic sulfate,

and gas-phase SO2. Residential emissions contribute sub-

stantially to the global aerosol burden, accounting for 25 %

of global energy-related BC emissions (Bond et al., 2013).

In China and India, residential emissions are even more im-

portant, accounting for 50–60 % of BC and 60–80 % of or-

ganic carbon (OC) emissions (Cao et al., 2006; Klimont et

al., 2009; Lei et al., 2011). The combustion of residential fu-

els also emit volatile and semi-volatile organic compounds

that lead to the production of secondary organic aerosols

via atmospheric oxidation. Residential emissions are domi-

nated by emissions from RSFs in many regions, due to poor

combustion efficiency of RSFs and extensive use across the

developing world (Bond et al., 2013). In China, residential

combustion of both biomass (referred to as “biofuel”) and

coal is important, whereas across other parts of Asia and

Africa residential combustion of biofuel is dominant (Lu et

al., 2011; Bond et al., 2013).

Estimates of residential emissions are typically “bottom-

up”, combining information on fuel consumption rates with

laboratory or field emission factors. Obtaining reliable es-

timates of residential fuel use is difficult because these fu-

els are often collected by consumers and are not centrally

recorded (Bond et al., 2013). Emission factors are hugely

variable, depending on the type, size, and moisture content

of fuel, as well as stove design, operation, and combustion

conditions (Roden et al., 2006, 2009; Li et al., 2009; Shen

et al., 2010). As a result, uncertainty in residential emissions

may be as large as a factor 2 or more (Bond et al., 2004).

There is a range of evidence that residential emissions may

be underestimated. Firstly, emission factors for RSF combus-

tion derived from laboratory experiments are often less than

those derived under ambient conditions (Roden et al., 2009).

Secondly, models typically underestimate observed aerosol

absorption optical depth, BC, and OC over regions associ-

ated with large RSF emissions such as in South and East Asia

(Park et al., 2005; Koch et al., 2009; Ganguly et al., 2009;

Menon et al., 2010; Nair et al., 2012; Fu et al., 2012; Moor-

thy et al., 2013; Bond et al., 2013; Pan et al., 2015). A further

complication is that residential emissions, particularly from

residential heating, also exhibit seasonal variability (Aunan

et al., 2009; Stohl et al., 2013), but this is rarely implemented

within global modelling studies.

Atmospheric aerosols interact with the Earth’s radiation

budget directly through the scattering and absorption of so-

lar radiation (direct radiative effect – DRE – or aerosol–

radiation interactions) and indirectly by modifying the mi-

crophysical properties of clouds (aerosol indirect effect –

AIE – or aerosol–cloud interactions) (Forster et al., 2007;

Boucher et al., 2013). The interaction of aerosol with radia-

tion and clouds depends on properties of the aerosol, includ-

ing mass concentration, size distribution, chemical composi-

tion, and mixing state (Boucher et al., 2013). BC is strongly

absorbing at visible and infrared wavelengths, exerting a pos-

itive DRE5. BC particles coated with a non-absorbing shell

have greater absorption compared to a fresh BC core due to

a lensing effect (Fuller et al., 1999; Jacobson, 2001). More

recent studies have shown that a fraction of organic aerosol

can absorb light (Kirchstetter et al., 2004; Chen and Bond,

2010; Arola et al., 2011), with the light absorbing fraction

termed “brown carbon”. The net DRE of residential combus-

tion emissions is a complex combination of these warming

and cooling effects.

Aerosol also impacts climate through altering the proper-

ties of clouds. The cloud albedo or first AIE is the radia-

tive effect due to a change in cloud droplet number concen-

tration (CDNC), assuming a fixed cloud water content. The

change in CDNC is governed by the number concentration

of aerosols that are able to act as cloud condensation nu-

clei (CCN), which is determined by aerosol size and chem-

ical composition (Penner et al., 2001; Dusek et al., 2006).

Modelling studies have shown the importance of carbona-

ceous combustion aerosols to global CCN concentrations

(Pierce et al., 2007; Spracklen et al., 2011a) and modifica-

tion of cloud properties (Bauer et al., 2010; Jacobson, 2010).

However, there is considerable variability in the size of par-

ticles emitted by combustion sources including those from

residential sources (Venkataraman and Rao, 2001; Shen et

al., 2010; Pagels et al., 2013; Bond et al., 2006) that will

impact simulated CCN concentrations (Pierce et al., 2007,

2009; Reddington et al., 2011; Spracklen et al., 2011a; Ko-

dros et al., 2015) and AIE (Bauer et al., 2010; Spracklen et
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al., 2011a; Kodros et al., 2015). Aerosols can further alter

cloud properties through the second aerosol indirect effect

and through semi-direct effects (Koch and Del Genio, 2010).

The net radiative effect (RE) of residential emissions de-

pends on the fuel and combustion process (Bond et al.,

2013). Carbonaceous emissions from residential biofuel ex-

hibit higher POM : BC mass ratios compared to residen-

tial coal, which emits more BC and sulfur (Bond et al.,

2013). Aunan et al. (2009) found that despite large BC emis-

sions over Asia, RSF combustion emissions exerted a small

net negative DRE because of co-emitted scattering aerosols;

however, this study did not include aerosol–cloud effects. Ja-

cobson (2010) reported increased cloud cover and depth from

biofuel aerosol and gases as well as a net positive RE. In con-

trast, Bauer et al. (2010) found the negative AIE from resi-

dential biofuel combustion to be 3 times greater than the pos-

itive DRE, resulting in a negative net RE. Unger et al. (2010)

used a mass-only aerosol model to calculate a positive AIE

due to the residential sector. The review of Bond et al. (2013)

identified a net negative RE (DRE and AIE) for biofuel with

large uncertainty but a slight net positive RE (with low cer-

tainty) from residential coal (Bond et al., 2013). However,

a recent detailed global modelling study found that the cli-

mate effects of residential biofuel combustion aerosol are

largely unconstrained because of uncertainties in emission

mass flux, emitted size distribution, optical mixing state, and

ratio of BC to POM (Kodros et al., 2015)

In addition to impacting climate, aerosol from residen-

tial fuel combustion degrades air quality with adverse impli-

cations for human health. Epidemiologic research has con-

firmed a strong link between exposure to particulate mat-

ter (PM) and adverse health effects, including premature

mortality (Pope III and Dockery, 2006; Brook et al., 2010).

Exposure to PM2.5 (PM with an aerodynamic dry diame-

ter of < 2.5 µm) is thought to be particularly harmful to hu-

man health (Pope III and Dockery, 2006; Schlesinger et al.,

2006). Household air pollution, mostly from RSF combus-

tion (Smith et al., 2014) in low and middle income countries,

is estimated to cause 4.3 million deaths annually (WHO,

2014a), making it one of the leading risk factors for global

disease burden (Lim et al., 2012). Global estimates of pre-

mature mortality attributable to ambient (outdoor) air pol-

lution range from 0.8 million to 3.7 million deaths per year,

most of which occur in Asia (Cohen et al., 2005; Anenberg

et al., 2010; WHO, 2014b). These estimates rely on PM2.5

concentrations from coarse global models with mean spa-

tial resolutions of ∼ 200 km. At these resolutions, human

health estimates are likely underestimated at urban and semi-

urban scales. Emission inventories highlight residential com-

bustion as one of the most important contributors to ambi-

ent PM2.5, accounting for 55 % in Europe (EEA, 2014) and

33 % in China (Lei et al., 2011). However, while previous

studies have estimated the human health impacts from am-

bient air pollution due to fossil fuel combustion (Anenberg

et al., 2010), open biomass burning (Johnston et al., 2012;

Marlier et al., 2013), and wind-blown dust (Giannadaki et

al., 2014), fewer studies have quantified the impact of res-

idential combustion on ambient quality and human health.

Lim et al. (2012) estimated that 16 % of the global burden of

ambient PM2.5 was due to RSF sources but did not estimate

premature mortality. Another study concluded that ambient

PM2.5 from cooking was responsible for 370 000 deaths in

2010 (Chafe et al., 2014), but it did not include residential

heating emissions, which will cause additional adverse im-

pacts on human health (Johnston et al., 2013; Allen et al.,

2013; Y. Chen et al., 2013).

Here we use a global aerosol microphysics model to make

an integrated assessment of the impact of residential emis-

sions on atmospheric aerosol, radiative effect, and human

health. We used a radiative transfer model to calculate the

DRE and first AIE due to residential emissions. To im-

prove our understanding of the health impacts associated

with these emissions, we combined simulated PM2.5 con-

centrations with concentration-response functions from the

epidemiological literature to estimate excess premature mor-

tality.

2 Methods

2.1 Model description

We used the GLOMAP global aerosol microphysics model

(Spracklen et al., 2005a), which is an extension to the TOM-

CAT 3-D global chemical transport model (Chipperfield,

2006). We used the modal version of the model, GLOMAP-

mode (Mann et al., 2010), where aerosol mass and num-

ber concentrations are carried in seven log-normal size

modes: four hydrophilic (nucleation, Aitken, accumulation,

and coarse) and three non-hydrophilic (Aitken, accumula-

tion, and coarse) modes. The model includes size-resolved

aerosol processes including primary emissions, secondary

particle formation, particle growth through coagulation, con-

densation, and cloud-processing and removal by dry depo-

sition, in-cloud, and below-cloud scavenging. The model

treats particle formation from both binary homogenous nu-

cleation (BHN) of H2SO4–H2O (Kulmala et al., 1998) and

an empirical mechanism to simulate nucleation within the

model boundary layer or boundary layer nucleation (BLN).

The formation rate of 1 nm clusters (J1) within the BL is pro-

portional to the gas-phase H2SO4 concentration ([H2SO4])

to the power of 1 (Sihto et al., 2006; Kulmala et al., 2006)

according to J1=A[H2SO4], where A is the nucleation rate

coefficient of 2× 10−6 s−1 (Sihto et al., 2006). GLOMAP-

mode simulates multi-component aerosol and treats the fol-

lowing components: sulfate, dust, BC, POM, and sea salt.

Primary carbonaceous combustion particles (BC and POM)

are emitted as a non-hydrophilic distribution (Aitken insol-

uble mode). Dust is emitted into the insoluble accumulation

and coarse modes. Non-hydrophilic particles are transferred

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016
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into hydrophilic particles through coagulation and conden-

sation processes. The model uses a horizontal resolution of

2.8◦ by 2.8◦ and 31 vertical levels between the surface and

10 hPa. Large-scale transport and meteorology is specified at

6 h intervals from the European Centre for Medium-Range

Weather Forecasts (ECMWF) analyses interpolated to model

timestep. All model simulations are for the year 2000, com-

pleted after a 3-month model spin up. Oxidants of OH, O3,

H2O2, NO3, and HO2 are specified using 6 h mean offline

concentrations from a TOMCAT simulation with detailed

tropospheric chemistry (Arnold et al., 2005).

2.2 Emissions

The model uses gas-phase SO2 emissions for both continu-

ous (Andres and Kasgnoc, 1998) and explosive (Halmer et

al., 2002) volcanic eruptions. Open biomass burning emis-

sions are from the Global Fire Emission Database (van der

Werf et al., 2004). Oceanic dimethyl-sulfide (DMS) emis-

sions are calculated using an ocean surface DMS concentra-

tion database (Kettle and Andreae, 2000) combined with a

sea–air exchange parameterization (Nightingale et al., 2000).

Emissions of sea salt were calculated using the scheme of

Gong (2003). Biogenic emissions of terpenes are taken from

the Global Emissions Inventory Activity database and are

based on Guenther et al. (1995). Daily-varying dust emission

fluxes are provided by AeroCom (Dentener et al., 2006).

Annual mean anthropogenic emissions of gas-phase SO2

and carbonaceous aerosol for the year 2000 are taken from

the Atmospheric Chemistry and Climate Model Intercompar-

ison Project (ACCMIP) (Lamarque et al., 2010). This data

set includes emissions from energy production and distribu-

tion, industry, land transport, maritime transport, residential

and commercial, and agricultural waste burning on fields. To

test the sensitivity to anthropogenic emissions, we completed

sensitivity studies (see Sect. 2.6) using anthropogenic emis-

sions from the MACCity (MACC/CityZEN projects) emis-

sion data set for the year 2000 (Granier et al., 2011). MACC-

ity emissions are derived from ACCMIP and apply a monthly

varying seasonal cycle for anthropogenic emissions (Granier

et al., 2011). In both emissions data sets, anthropogenic car-

bonaceous emissions are based on the Speciated Particulate

Emissions Wizard (SPEW) inventory (Bond et al., 2007). In

GLOMAP, anthropogenic carbonaceous emissions are added

to the lowest model layer, while open biomass burning emis-

sions are emitted between the surface and 6 km (Dentener et

al., 2006).

We isolate the impact of residential fuel combustion

through simulations where we switch off emissions from the

“residential and commercial” sector. The term “residential”

includes emissions from household activities, while “com-

mercial” refers to emissions from commercial business activ-

ities (excluding agricultural activities). Both residential and

commercial activities use similar fuels for similar purposes,

but because emissions are dominated by residential activi-

ties, we refer to the “residential and commercial” sector col-

lectively as the “residential” sector. Residential fuels used in

small-scale combustion for cooking, heating, lighting, and

auxiliary engines, consist of many different types such as

RSFs (biomass/biofuel and coal) and hydrocarbon-based fu-

els including kerosene, liquefied petroleum gas, gasoline, and

diesel. The ACCMIP and MACCity residential data sets do

not allow us to isolate the impacts of different RSFs sepa-

rately from other residential hydrocarbon-based fuels, but ac-

cording to the results from the Greenhouse Gas and Air Pol-

lution Interactions and Synergies (GAINS) model, typically

≥ 90 % of PM emissions can be attributed to RSFs within

most regions, of which a large proportion is from biomass

sources. Compared with residential hydrocarbon-based fuels,

RSFs typically burn at lower combustion efficiencies, result-

ing in substantially higher aerosol emissions (Venkataraman

et al., 2005). Residential kerosene wick lamps can produce

substantial emissions (Lam et al., 2012); however, these are

not included in the ACCMIP and MACCity data sets. Resi-

dential biofuel and coal emissions from ACCMIP and MAC-

City differ to previous global emission inventories (Bond et

al., 2004, 2007) through the incorporation of updated emis-

sions factors from field measurements (Roden et al., 2006,

2009; Johnson et al., 2008) and laboratory experiments for

biofuel sources in India (Venkataraman et al., 2005; Parashar

et al., 2005) and residential coal sources in China (Chen et

al., 2005, 2006; Zhi et al., 2008). In both the ACCMIP and

MACCity emission data sets, global emissions for the resi-

dential and commercial sectors are BC (∼ 1.9 Tg yr−1), POM

(∼ 11.0 Tg POM yr−1), and SO2 (∼ 8.3 Tg SO2 yr−1).

Figure 1 shows the spatial distribution of BC, POM, and

SO2 emissions from the residential sector in the ACCMIP

data set (Lamarque et al., 2010). Residential emissions are

greatest over densely populated regions of Africa and Asia

where infrastructure and income do not allow access to clean

sources of residential energy. The dominant fuel type varies

spatially resulting in distinct patterns in pollutant emission

ratios (Fig. 1d–e). Residential emissions are dominated by

biofuel (biomass) combustion in sub-Saharan Africa, South

Asia, and parts of Southeast Asia and characterised by low

BC : POM and high BC : SO2 ratios. Residential coal com-

bustion is more important in parts of Eastern Europe, the

Russian Federation, and East Asia, characterised by higher

BC : POM and lower BC : SO2 ratios. In the ACCMIP and

MACCity data sets, residential sources account for 38 % of

global total anthropogenic BC and 61 % of total global an-

thropogenic POM emissions. The regional contribution of

residential emissions can be even greater (Fig. 1f). For China,

residential emissions represent 40 % of anthropogenic BC

and 60 % of anthropogenic POM emissions. In India, resi-

dential emissions represent 63 % of anthropogenic BC and

78 % of anthropogenic POM emissions.

We assume primary particles from combustion sources

are emitted with a fixed log-normal size distribution with

a specified geometric mean diameter (D) and standard de-
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Figure 1. Annual residential emissions from the ACCMIP emission data set for BC (a), POM (b), SO2 (c), BC : POM ratio (d), BC : SO2

ratio (e), and residential POM to total anthropogenic POM (f).

viation (σ ). Assumptions regarding D and σ for each ex-

periment are detailed in the footnotes of Table 2. This as-

sumption accounts for both the size of primary particles at

the point of emission and the sub-grid-scale dynamical pro-

cesses that contribute to changes in particle size and number

concentrations at short timescales after emission (Pierce and

Adams, 2009; Reddington et al., 2011). Subsequent aging

and growth of the particles are determined by microphysi-

cal processes such as coagulation, condensation, and cloud

processing simulated by the model. We assume that 2.5 % of

SO2 from anthropogenic and volcanic sources is emitted as

primary sulfate particles.

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016
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2.3 In situ measurements

To evaluate our model, we synthesised in situ measurements

of BC, OC, and PM2.5 concentrations, aerosol number size

distribution, and estimates of the contribution of biomass de-

rived BC from 14C analysis. GLOMAP has been evaluated

for locations in North America (Mann et al., 2010; Spracklen

et al., 2011a), the Arctic (Browse et al., 2012; Reddington et

al., 2013), and Europe (Schmidt et al., 2011). Here, we focus

our evaluation at locations that may be strongly influenced

by residential emissions (Fig. 1) and where the model has not

been previously evaluated. We focus on rural and background

locations because these are more appropriate for comparison

to global models with coarse spatial resolutions.

Figure 2 shows the locations of observations used in this

study. Information on the measurements for each location is

reported in Table 1. Note that the coloured geographical re-

gions in Fig. 2 are only used to distinguish differences in

mortality across different regions (see Sect. 3.3). The tech-

nique and instruments used to measure BC and OC vary

across the different sites (see Table 1). Thermal–optical tech-

niques measure elemental carbon (EC) whereas optical tech-

niques measure BC. Previous studies have documented sys-

tematic differences between these techniques but concluded

that measurement uncertainties are generally larger than the

differences between the measurement techniques (Bond et

al., 2004, 2007). We therefore treat different measurement

techniques identically and consider EC and BC to be equiv-

alent. For sites in Eastern Europe, we used BC and OC mass

concentrations from the Czech Republic and Slovenia (Ta-

ble 1). For sites in South Africa, we used PM2.5 and BC

mass and aerosol number size distribution (Vakkari et al.,

2013). For sites in South Asia, we used BC mass from the

Integrated Campaign for Aerosols gases and Radiation Bud-

get (ICARB) field campaign at eight locations across the In-

dian mainland and islands (Moorthy et al., 2013). For South

Asian sites, we also used PM2.5, EC, and OC mass, aerosol

number size distribution from the island of Hanimaadhoo in

the Maldives (Stone et al., 2007), and EC and OC measure-

ments from Godavari in Nepal (Stone et al., 2010). For sites

in East Asia, we used EC and OC mass data compiled by

Fu et al. (2012) for two background (Qu et al., 2008) and

seven rural sites (Zhang et al., 2008; Han et al., 2008) in

China, while measurements from Gosan, South Korea, were

taken from Stone et al. (2011). Few long-term observations

of CCN are available, so instead we use the number con-

centration of particles greater than 50 nm dry diameter (N50)

and 100 nm (N100) as a proxy for CCN number concen-

trations. We calculated N50 and N100 concentrations from

aerosol number size distribution measurements at Hanimaad-

hoo, Botsalano, Marikana, and Welgegund (see Table 1). We

note this approach does not account for the impact of particle

composition on CCN activity.

We also use information on BC fossil and non-fossil frac-

tions as obtained from three separate source apportionment

0 20E 40E 60E 80E 100E 120E 140E

30S

0

30N

60N

Kosetice

Iskrba

Botsalano

Marikana
Welgegund

Gosan

Port BlairMinicoy

Kharagpur

Trivandrum

Godavari

Hanimaadhoo

Akdala

Zhuzhang

Dunhuang

Gaolanshan

Wusumu
Longfengshan

Taiyangshan

Jinsha
LinAn

1

Figure 2. Locations of aerosol measurements used in this study and

geographical regions of Eastern Europe and the Russian Federa-

tion (red), Africa (orange), South Asia (dark blue), Southeast Asia

(light blue), and East Asia (green). Note that geographical regions

are only used to distinguish difference in mortality across different

regions (see Sect. 3.3).

studies (Gustafsson et al., 2009; Sheesley et al., 2012; Bosch

et al., 2014) that use 14C analysis of carbonaceous aerosol

taken at Hanimaadhoo in the Indian Ocean. This technique

determines the fossil and non-fossil fractions of carbona-

ceous aerosol, since 14C is depleted in fossil fuel aerosol

(half-life 5730 years), whereas non-fossil aerosol (e.g. bio-

fuel, open biomass burning, and biogenic emissions) shows

a contemporary 14C content. As previously mentioned, resi-

dential emissions consist of a mixture of both fossil and non-

fossil sources, with a greater proportion coming from the for-

mer. To make distinctions on the fossil versus non-fossil frac-

tion of residential BC emissions, we make assumptions based

on information from other emission inventories and models

over the South Asian region (see Sect. 3.2 for more details).

2.4 Calculating health effects

We calculate annual excess premature mortality from expo-

sure to ambient PM2.5 using concentration response func-

tions (CRFs) from the epidemiological literature that relate

changes in PM2.5 concentrations to the relative risk (RR)

of disease. CRFs are uncertain and have been previously

based on the relationship between RR and PM2.5 concen-

trations using either a log-linear model (Ostro, 2004) or a

linear model (Cohen et al., 2004). These CRFs were based

on the American Cancer Society Prevention cohort study,

where observed annual mean PM2.5 concentrations were typ-

ically below 30 µg m−3. The log-linear model was recom-

mended by the WHO for use in ambient air pollution burden

of disease estimates at the national level (Ostro, 2004) due to

the concern that linear models would produce unrealistically

large RR estimates when extrapolated to higher PM2.5 con-

centrations above that of 30 µg m−3. The log-linear models

have been used in various modelling studies (Anenberg et al.,
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2010; Schmidt et al., 2011; Partanen et al., 2013; Reddington

et al., 2015). More recent models have been proposed to re-

late disease burden to different combustion sources in order

to capture RR over a larger range of PM2.5 concentrations up

to 300 µg m−3 (Burnett et al., 2014). However, given that we

use a global model with relatively coarse spatial resolution

where PM2.5 concentrations very rarely exceed 100 µg m−3,

we employ the log-linear model of Ostro (2004). We calcu-

late RR for cardiopulmonary diseases and lung cancer fol-

lowing Ostro (2004):

RR=

[(
PM2.5,control+ 1

)(
PM2.5,R_off+ 1

) ]β , (1)

where PM2.5,control is annual mean simulated PM2.5 concen-

trations of the control experiments and PM2.5,R_off is a per-

turbed experiment where residential emissions have been re-

moved. The cause-specific coefficient (β) is an empirical

parameter with separate values for lung cancer (0.23218,

95 % confidence interval of 0.08563–0.37873) and car-

diopulmonary diseases (0.15515, 95 % confidence interval

of 0.05624–0.2541). To calculate the disease burden at-

tributable to the RR, known as the attributable fraction (AF),

we follow Ostro (2004):

AF= (RR− 1)/RR. (2)

To calculate the number of excess premature mortality in

adults over 30 years of age, we apply AF to the total num-

ber of recorded deaths from the diseases of interest:

1M = AF×M0×P30+, (3)

where M0 is the baseline mortality rate for each disease risk

and P30+ is the exposed population over 30 years of age.

We only calculate premature mortality for persons over the

age of 30 years because this fraction of the population is

more susceptible to cardiopulmonary disease and lung can-

cer. We use country-specific baseline mortality rates from the

WHO “The global burden of disease: 2004 update” (Math-

ers et al., 2008) for the year 2004 and human population data

from the Gridded World Population (GWP, version 3) project

(SEDAC, 2004) for the year 2000.

2.5 Calculating radiative effects

We quantified the DRE and first AIE of residential emis-

sions using an offline radiative transfer model (Edwards

and Slingo, 1996). With nine radiation bands in the long-

wave (LW) and six bands in the shortwave (SW). We use a

monthly mean climatology of water vapour, temperature, and

ozone based on ECMWF reanalysis data, together with sur-

face albedo and cloud fields from the International Satellite

Cloud Climatology Project (ISCCP-D2) (Rossow and Schif-

fer, 1999) for the year 2000.

Following the methodology described in Rap et al. (2013)

and Scott et al. (2014), we estimate the DRE using the

radiative transfer model to calculate the difference in net

(SW+LW) top-of-atmosphere (TOA) all-sky radiative flux

between model simulations with and without residential

emissions. A refractive index is calculated for each individ-

ual mode separately, as the volume-weighted mean of the re-

fractive indices for the individual components (including wa-

ter) present (given at 550 nm in Table A1 of Bellouin et al.,

2011). Coefficients for absorption and scattering, and asym-

metry parameters, are then obtained from look-up tables con-

taining all realistic combinations of refractive index and Mie

parameter (particle radius normalised to the wavelength of

radiation), as described by Bellouin et al. (2013). The as-

sumption that BC is internally or homogeneously mixed with

scattering species is unrealistic, providing an upper bound for

DRE (Jacobson, 2001; Kodros et al., 2015).

To determine the first AIE we calculate the contribution

of residential emissions to CDNC. We calculate CDNC us-

ing the parameterisation of cloud drop formation (Nenes and

Seinfeld, 2003; Fountoukis and Nenes, 2005; Barahona et

al., 2010) as described by Pringle et al. (2009). The max-

imum supersaturation (SSmax) of an ascending cloud par-

cel depends on the competition between increasing water

vapour saturation with decreasing pressure and temperature

and the loss of water vapour through condensation onto acti-

vated particles. Monthly mean aerosol size distributions are

converted to a supersaturation distribution where the num-

ber of activated particles can be determined for the SSmax.

CDNC are calculated using a constant up-draught velocity of

0.15 ms−1 over sea and 0.3 ms−1 over land, which is consis-

tent with observations for low-level stratus and stratocumulus

clouds (Pringle et al., 2012). In reality, up-draught velocities

vary, but the use of average velocities in previous GLOMAP

studies has been shown to capture observed relationships be-

tween particle number and CDNC (Pringle et al., 2009), as

well as reproducing realistic CDNC (Merikanto et al., 2010).

The AIE is calculated using the methodology described pre-

viously (Spracklen et al., 2011a; Schmidt et al., 2012; Scott

et al., 2014) where a control uniform cloud droplet effective

radius re1= 10 µm is assumed to maintain consistency with

the ISCCP determination of liquid water path. For each per-

turbation experiment the effective radius re2 is calculated:

re2 = re1 × (CDNC1/CDNC2)
1
3 , (4)

where CDNC1 represents a control simulation including res-

idential emissions and CDNC2 represents a simulation where

residential emissions have been removed. The AIE is calcu-

lated by comparing the net TOA radiative fluxes using the

different re2 values derived for each perturbation experiment,

to that of the control where re1 is fixed. We do not calcu-

late the cloud lifetime (second indirect effect), semi-direct

effects, or snow albedo changes. We also do not account for

light absorbing brown carbon and the lensing effect of BC

particles coated with a non-absorbing shell, and thus we are

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016
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unable to estimate the full climate impact of residential com-

bustion emissions.

2.6 Model simulations

Table 2 reports the model experiments used in this study.

These simulations explore uncertainty in residential emis-

sion flux and emitted carbonaceous aerosol size distributions

and the impact of particle formation. We test two different

emission data sets (see Sect. 2.2 for details) allowing us to

explore the role of seasonally varying emissions compared

to annual mean emissions. We refer to the simulation using

the ACCMIP emissions (annual mean emissions) with the

standard model setup as the baseline simulation (res_base),

while all other simulations explore key uncertainties rel-

ative to res_base or use the MACCity emission database

of monthly varying anthropogenic emissions (res_monthly).

To allow us to quantify the impact of residential emissions

we conduct simulations where residential emissions (BC,

OC and SO2) have been switched off (res_base_off and

res_monthly_off). To account for uncertainties in the nu-

cleation scheme, we conduct simulations where only BHN

is able to contribute to new particle formation (res_BHN

and res_BHN_off), while all other simulations include both

BHN and BLN. For the majority of our simulations, we use

D and σ recommended by Stier et al. (2005) (D= 150 nm

σ = 1.59). To account for the uncertainty in the size of emit-

ted residential carbonaceous combustion aerosol and uncer-

tainty of sub-grid ageing of the size distribution, we con-

duct simulations spanning the range of observed size distri-

butions for primary BC and OC residential combustion par-

ticles, while keeping emission mass fixed. We use AeroCom

(Dentener et al., 2006) recommended particle size settings

(res_aero) (D = 80nm σ = 1.8) and, following a similar ap-

proach to Bauer et al. (2010), we use the range identified by

Bond et al. (2006) for lower (res_small) (D= 20 nm σ = 1.8)

and upper (res_large) (D= 500 nm σ = 1.8) estimates. To ac-

count for possible low biases in residential emission flux, we

conduct simulations where residential primary carbonaceous

combustion aerosol mass (BC and OC) are doubled relative

to the baseline simulation (res_× 2) and the simulation using

monthly mean anthropogenic emissions (res_monthly_× 2).

We also perform experiments where only residential BC and

OC emissions are doubled separately relative to the baseline

simulation (res_BC× 2 and res_POM× 2) to explore uncer-

tainties in both emission mass flux and emission ratio. While

the uncertainties in primary carbonaceous aerosol emissions

are thought to be higher than for gas-phase SO2 (Klimont et

al., 2009), we also conduct an experiment where we double

residential SO2 emissions (res_SO2× 2).

3 Results

3.1 Model evaluation

Figure 3 compares observed and simulated monthly mean

BC, OC, and PM2.5 concentrations and normalised mean bias

factor (NMBF) (Yu et al., 2006), where Mi are the simulated

concentrations by the model andOi are the observed concen-

trations at each measurement location, i,

NMBF=

∑
(Mi −Oi)∑

Oi
if M ≥O and

NMBF=

∑
(Mi −Oi)∑

Mi

if M <O. (5)

The baseline simulation underestimates observed BC

(NMBF=−2.33), OC (NMBF=−5.02), and PM2.5

(NMBF=−1.33) concentrations. The greatest model un-

derprediction is across East Asia (BC: NMBF=−2.61,

OC: NMBF=−6.56, and PM2.5: NMBF=−1.94). Over

South Asia the model is relatively unbiased against OC

(NMBF= 0.41) but underestimates BC (NMBF=−2.54).

In contrast, over Eastern Europe the model is unbi-

ased against BC (NMBF= 0.01) but underestimates OC

(NMBF=−2.63). The simulation with monthly varying

emissions compares slightly better with observations com-

pared to the baseline simulation but still underestimates

BC (NMBF=−2.29), OC (NMBF=−4.92), and PM2.5

(NMBF=−1.34), suggesting that seasonality in emissions

has little impact on reducing model bias. The low bias

in our model, particularly for BC and OC, is consistent

with previous modelling studies using bottom-up emission

inventories in South Asia (Ganguly et al., 2009; Menon et

al., 2010; Nair et al., 2012; Moorthy et al., 2013; Pan et al.,

2015) and East Asia (Park et al., 2005; Koch et al., 2009;

Fu et al., 2012). The contribution of residential emissions is

illustrated by the model simulation where these emissions

are switched off, with substantially greater underestimation

of BC (NMBF=−5.12), OC (NMBF=−11.46), and

PM2.5 (NMBF=−1.60) concentrations (Fig. 3d). Doubling

residential carbonaceous emissions improves model agree-

ment with observations, but the model still underestimates

BC (NMBF=−1.33), OC (NMBF=−2.96), and PM2.5

(NMBF=−1.17) concentrations.

Figure 4 compares observed and simulated concentrations

for South Asian locations. The baseline simulation under-

estimates carbonaceous aerosol concentrations at all loca-

tions, although there is better agreement at Godavari and

Hanimaadhoo. BC measurements at these two sites were

made through thermal–optical methods, whereas other loca-

tions in South Asia used optical methods (Table 1). Differ-

ent measurement techniques result in different mass concen-

trations (Stone et al., 2007) and may contribute to model–

observation errors. The emission inventory that we use is

based on carbonaceous measurements using thermal–optical
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1

Figure 3. Observed and simulated monthly mean BC (a), OC (b), and PM2.5 (c) concentrations for the baseline simulation (res_base) using

ACCMIP emissions at each measurement location depicted in Table 1 and normalised mean bias factor (NMBF) for each region defined

in Table 1. (d) NMBF where square shows the baseline simulation, bottom error bar shows the range for removed residential emissions

(res_base_off), and top error bar shows residential carbonaceous emissions doubled (res_× 2) for each region defined in Table 1. Colours

represent observed, simulated, and NMBF for measurement location regions defined in Table 1: all measurement locations (All: black), South

Asian locations (SAsia: blue), East Asian locations (EAsia: green), Eastern European locations (EEurope: red), and South African locations

(SAfrica: orange).

methods (Bond et al., 2004), which might explain the bet-

ter agreement at Godavari and Hanimaadhoo. Doubling res-

idential carbonaceous emissions improves the comparison

against observations but leads to slight overestimation at Go-

davari and Hanimaadhoo. Pan et al. (2015) found that seven

different global aerosol models underpredicted observed BC

by up to a factor 10, suggesting that anthropogenic emissions

are underestimated in these regions.

Observed BC and OC concentrations show strong sea-

sonal variability, with lower concentrations during the sum-

mer monsoon period (June–September). The baseline simu-

lation generally captures this seasonality relatively well (cor-

relation coefficient between observed and simulated monthly

mean concentrations r > 0.5 at most sites), with minimal im-

provement with monthly varying anthropogenic emissions.

This suggests that meteorological conditions such as en-

hanced wet deposition during the summer monsoon period

are the dominant drivers for the observed and simulated sea-

sonal variability, consistent with other modelling studies for

the same region (Adhikary et al., 2007; Moorthy et al., 2013).

Model simulations where residential emissions have been

switched off show that residential combustion contributes

about two-thirds of simulated BC and OC at these locations.

Figure 4k–l show a comparison of observed and simulated

aerosol number concentrations at Hanimaadhoo. At this loca-

tion, the baseline simulation simulates N20 (NMBF= 0.14),

N50 (NMBF= 0.14) and N100 (NMBF= 0.24) concentra-

tions well. Simulated number concentrations are sensitive to

emitted particle size. Emitting residential primary carbona-

ceous emissions at very small sizes (res_small) results in an

overestimation of N20 (NMBF= 1.84), N50 (NMBF= 1.28)

and N100 (NMBF= 1.05), suggesting that this assumption is

unrealistic.

Figure 5 compares observed and simulated surface

monthly mean BC and OC concentrations for East Asian

locations. Observed surface BC and OC concentrations

are generally enhanced during winter (December–February)

compared to the summer (June–August). At all locations, the

model underestimates BC (except for Gosan) and OC con-

centrations. The baseline simulation underpredicts both BC

(NMBF<−2) and OC (NMBF<−6) at Gaolan Shan and

Longfengshan (as well as Akdala, Dunhuang, and Wusumu,

which are not shown in Fig. 5), which is consistent with a

previous model study at these locations (Fu et al., 2012).
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1

Figure 4. Observed (black stars) and simulated monthly mean BC (a–f), OC (g–h), PM2.5 (i), and daily mean N20 (k), N50 (j), and

N100 (l) at South Asian locations. Normalised mean bias factor (NMBF) and correlation coefficient (r) are reported for each model sim-

ulation: NMBF(r). Experiments where residential emissions have been removed are represented by the blue (res_base_off) and green

(res_monthly_off) dotted lines. Note that additional experiments (res_BHN, res_aero, res_small, and res_large) are included in (k)–(i) be-

cause these experiments have little impact on aerosol mass (a–j).

The substantial underestimation at some locations (e.g. Dun-

huang, Gaolan Shan, and Wusumu) may be due to local par-

ticulate sources that are not resolved by coarse model res-

olution. If we exclude these locations, NMBF improves for

BC (−2.61 to −1.34) and OC (−4.43 to −3.29) for the East

Asian region. The model better simulates BC (NMBF<−1)

and OC (NMBF<−2) at Taiyangshan and Jinsha, although

the model is still biased low. The baseline simulation, without

seasonally varying emissions, fails to capture the observed

seasonal variability in East Asia, with negative correlations

between observed and simulated aerosol concentrations at a

number of locations. Fu et al. (2012) suggests that residen-

tial emissions (most likely heating sources) were the prin-

ciple driver of simulated seasonal variability of EC (BC)

at these locations. Implementing monthly varying anthro-

pogenic emissions (including residential emissions) gener-

ally improves the simulated seasonal variability (r > 0.3 at

most sites) compared to using annual mean emissions. Dou-

bling residential carbonaceous emissions also leads to im-

proved NMBF at most locations. Residential emissions typi-
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1

Figure 5. Observed (black stars) and simulated monthly mean BC (a–f) and OC (g–l) at East Asian locations. Normalised mean bias

factor (NMBF) and correlation coefficient (r) are reported for each model simulation: NMBF(r). Experiments where residential emissions

have been removed are represented by the blue (res_base_off) and green (res_monthly_off) dotted lines.

cally account for 50–65 % of simulated BC and OC concen-

trations at these locations.

Figure 6 compares simulated and observed aerosol at

South African and Eastern European locations. Marikana,

Botsalano, and Welgegund are all located within the same

region of South Africa and are influenced by both res-

idential emissions and open biomass burning during the

dry season, of which open biomass burning savannah fire

seasonality peaks in July–September (Venter et al., 2012;

Vakkari et al., 2013). Simulated aerosol number concen-

trations (N20 and N100) are underestimated at Marikana,

consistent with the underprediction in BC at the same lo-

cation, while number concentrations are better simulated

at Botsalano and Welgegund. The model underprediction

at Marikana is likely due to the location being closer to

emission sources, compared to Botsalano and Welgegund.

For N100 the model is generally good at simulating open

biomass savannah burning seasonality (peaking in August–

September), but increases in observed N100 earlier in the

season (May–August at Marikana and July at Welgegund)

are not simulated. At both locations this early season max-

ima is likely due to residential emissions (Vakkari et al.,

2013), which suggests that residential emissions are under-

represented in the model possibly due to resolution effects.
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1

Figure 6. Observed (black stars) and simulated monthly mean N20 (a–c), N100 (d–f), PM2.5 (g), BC (h–k), and OC (j–l) at South African

and Eastern European locations. Normalised mean bias factor (NMBF) and correlation coefficient (r) are reported for each model sim-

ulation: NMBF(r). Experiments where residential emissions have been removed are represented by the blue (res_base_off) and green

(res_monthly_off) dotted lines. Note that additional experiments (res_BHN, res_aero, res_small, and res_large) are included in (a)–(f) be-

cause these experiments have little impact on aerosol mass (g–i).

Aerosol number concentrations at Botsalano (NMBF= 0.47

to 1.01) and Welgegund (NMBF= 0.55 to 2.81) are overes-

timated when primary carbonaceous particles are emitted at

the smallest size (res_small), matching comparisons in South

Asia and further suggesting that this assumption is unrealis-

tic. The baseline simulation underestimates BC at Marikana

(NMFB=−2.38) and PM2.5 concentrations at Botsalano

(NMBF=−0.88), with a reduction in BC bias when residen-

tial carbonaceous emissions are doubled (NMBF=−1.62).

At both these locations the model simulates a reasonable sea-

sonality even without monthly varying residential emissions

(r > 0.7), possibly due to strong seasonality in open biomass

savannah burning emissions.

Similar to other locations, observed BC and OC concentra-

tions in Eastern Europe (Fig. 6i–l) are enhanced during win-

ter (December–February). The baseline simulation performs

well at simulating BC at Košetice (NMBF=+0.07) and

Iskrba (NMBF=−0.14) but underestimates OC at Košet-

ice (NMBF=−2.21) and Iskrba (NMBF=−3.27). Model

agreement does not improve much when monthly varying

anthropogenic emissions are used. The model performs bet-
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1

Figure 7. Percentage contribution of residential emissions to annual surface mean PM2.5 (a), BC (b), POM (c), and sulfate (SO4) (d)

concentrations (in size fraction PM2.5) for the baseline simulation (res_base), relative to an equivalent simulation where residential emissions

have been removed (res_base_off).

ter when residential carbonaceous emissions are doubled, but

overestimates BC at Košetice.

In summary, we find the model typically underestimates

observed BC and OC mass concentrations, which matches

results from previous studies. Doubling residential emissions

improves comparison against BC and OC observations, al-

though the model is still typically biased low. To explore this

further, we use 14C analysis (Sect. 3.2) to evaluate the con-

tribution of residential emissions to carbonaceous aerosol.

In general, the model compares better against observations

of particle number, except when carbonaceous particles are

emitted at small sizes leading to large overestimates in parti-

cle number.

3.2 Contribution of residential emissions to PM

concentrations

Figure 7 shows the fractional contribution of residential

emissions to annual mean surface PM2.5, BC, POM, and sul-

fate concentrations for the baseline simulation. Greatest frac-

tional contributions (15 to > 40 %) to surface PM2.5 are sim-

ulated over Eastern Europe (including parts of the Russian

Federation), parts of East Africa, South Asia, and East Asia.

Over these regions residential emissions contribute annual

mean PM2.5 concentrations of up to 6 µg m−3, dominated

by changes in POM concentrations of 2–5 µg m−3, with BC

and sulfate contributing up to 1 µg m−3. Residential emis-

sions contribute up to 60 % of simulated BC and POM over

parts of Eastern Europe, Russian Federation, Asia, southeast-

ern Africa, and northwestern Africa. Contribution of residen-

tial emissions to surface sulfate concentrations are typically

smaller, with contributions of 10–14 % over parts of Asia,

Eastern Europe, and the Russian Federation where residen-

tial coal emissions are more important (see Sect. 2.2). Over

China, residential emissions account for 13 % of simulated

annual mean PM2.5, with larger contributions of 20–30 %

in the eastern China. Over India, residential emissions ac-

count for 22 % of simulated annual mean PM2.5, with con-

tributions> 40 % over the Indo-Gangetic Plain. The contri-

butions to PM2.5 are increased to 21 % for China and 34 %

for India, when residential carbonaceous emissions are dou-

bled. The contribution of residential emissions to annual

mean surface BC (POM) concentrations is ∼ 40 % (44 %)

for China and∼ 60 % (58 %) for India. When residential car-

bonaceous emissions are doubled, BC (POM) contributions

are increased to 55 % (60 %) for China and 75 % (73 %) for

India.

www.atmos-chem-phys.net/16/873/2016/ Atmos. Chem. Phys., 16, 873–905, 2016



890 E. W. Butt et al.: The impact of residential combustion emissions

The absolute contribution of residential emissions to PM

concentrations are greatest in the NH between 0 and 60◦ N

below 500 hPa (not shown). The fractional contributions

within this region are up to 16–24 % for both BC and

POM and 1–4 % for sulfate. Residential emissions contribute

∼ 20 % of BC and ∼ 12–16 % of POM aloft (above 500 hPa)

but cause small reductions in sulfate (−1 to−4 %) due to the

suppression of nucleation and growth (see Sect. 3.4 for more

details).

Table 2 reports the impact of residential emissions on sim-

ulated global annual mean BC and POM burden and con-

tinental surface PM2.5 concentrations. In the baseline simu-

lation, the global BC burden is 0.11 Tg with a global mean

atmospheric BC lifetime of 4.95 days. This lifetime matches

the 4.4 to 5.1 days reported by X. Wang et al. (2014), sug-

gesting that our underestimation of observed BC is not due

to fast deposition and short atmospheric lifetime, at least in

comparison to other models. In the baseline simulation, res-

idential emissions result in a global BC burden of 0.024 Tg,

contributing 22 % of the global BC burden. Residential emis-

sions contribute 12 % of global POM burden. When residen-

tial carbonaceous emissions are doubled, residential emis-

sions contribute 33 % of the BC burden and 23 % of the

POM burden. Changing from annual mean to monthly vary-

ing emissions results in little change to the global BC or

POM burden. Emitting carbonaceous particles at very small

sizes (res_small) results in a greater fractional contribution

to global atmospheric BC (∼ 23 %) and POM (∼ 18 %) and

longer BC lifetime (5.4 days) compared to the baseline sim-

ulation. Because the removal of carbonaceous particles in

the model is size dependant (particularly for wet deposition),

small particles below a critical size can escape removal, lead-

ing to enhanced lofting to the free troposphere (FT) where

deposition rates are slow. In the res_small simulation, frac-

tional changes in BC burden can be as large as 60–100 %

in the FT, compared to 25–40 % in the baseline simula-

tion. Continental surface PM2.5 concentrations are increased

by ∼ 2 % in the baseline simulation, which is increased to

∼ 3.6 % when carbonaceous residential emissions are dou-

bled.

We further evaluate the simulated contribution of residen-

tial emissions to BC concentrations using 14C source appor-

tionment studies on the island of Hanimaadhoo (Gustafsson

et al., 2009; Sheesley et al., 2012; Bosch et al., 2014), which

is influenced by pollution transported from the Indian sub-

continent. The model simulates well both BC and OC con-

centrations observed at this location (Sect. 3.1). Figure 8

compares simulated and observed biomass contributions to

BC at Hanimaadhoo. The observed contribution depends on

not only the time of year the measurements were taken but

also the measurement technique used to derive BC (EC). For

example, during the same measurement period Gustafsson et

al. (2009) found that 46± 8 % of EC and 68± 6 % of BC

originated from non-fossil biomass (January–March). Bosch

et al. (2014) estimate that 59± 8 % of EC is from non-fossil

1

Figure 8. Comparison of simulated (squares) and observed (cir-

cles, error bars show uncertainty range) contributions of non-

fossil (residential biofuel and open biomass burning) sources to

BC concentrations in Hanimaadhoo, Indian Ocean. Observations

are from Gustafsson et al. (2009) (“Gus EC” (thermo-optical)

and “Gus BC” (optical) for January–March), Bosch et al. (2014)

(“Bos EC” (thermo-optical) for February–March), and Sheesley et

al. (2012) (“She EC” (thermo-optical) for November–February).

Model simulations are represented by squares: standard emissions

(blue: res_base; green: res_monthly) and where residential car-

bonaceous emissions have been doubled (yellow: res_× 2; orange:

res_monthly_× 2). Simulated fractional contributions are averaged

over the time of year that the observations were made.

biomass (February–March). Sheesley et al. (2012) estimated

that 73± 6 % of EC originated from non-fossil biomass dur-

ing the dry season (November–February). The observed con-

tribution of non-fossil BC (EC) therefore spans a range of

46–73 %. Residential biofuel/biomass combustion dominates

residential emissions in South Asia (Venkataraman et al.,

2005). To estimate non-fossil values from the model, we as-

sume that 90 % of residential BC transported to Hanimaad-

hoo originates from residential biofuel sources (consistent

with≥ 90 % estimates from the GAINS model), while the re-

maining non-fossil BC originates from open biomass burning

(including agricultural waste and open waste/rubbish burn-

ing). We find a small contribution (< 10 % for all simula-

tions) of open biomass burning to simulated BC at Hani-

maadhoo, confirming that the non-fossil contribution at this

location is likely dominated by residential biomass/biofuel

sources, which is supported by the observed consistent con-

Atmos. Chem. Phys., 16, 873–905, 2016 www.atmos-chem-phys.net/16/873/2016/



E. W. Butt et al.: The impact of residential combustion emissions 891

0 0.1 1 10 100 1000 2000 4000 6000 8000 10000
Premature mortality from cardiopulmonary disease and lung cancer in adults (>30 years)

1

Figure 9. Simulated annual premature mortality (cardiopulmonary

diseases and lung cancer) due to ambient exposure to ambient

PM2.5 from residential emissions (res_base – res_off).

tribution from a non-fossil source (Sheesley et al., 2012). The

simulated contribution of non-fossil sources to total BC at

this location is ∼ 57–79 %, depending on the time of year

and model simulation. The baseline simulation has a 57 %

contribution of non-fossil sources to simulated BC concen-

trations, with little variation between different times of year

due to the annual mean emissions applied in this simulation.

Model simulations with monthly varying emissions have a

greater contribution of non-fossil sources to BC at this lo-

cation, as well as greater variability between seasons with a

contribution of 62–65 %. Doubling residential emissions in-

creases the contribution of non-fossil sources to ∼ 72 % for

annual mean emissions and ∼ 76–79 % for monthly varying

emissions. The spread in observed EC contributions makes

it difficult to constrain the contribution of residential emis-

sions, with baseline and doubling of residential BC emissions

bracketing the observed range. We do not analyse the non-

fossil fraction of OC since OC arises from a larger range

of sources including primary emissions and secondary or-

ganic aerosol (SOA). Nevertheless, non-fossil water-soluble

organic carbon at Hanimaadhoo is dominated (∼ 80 %) by

biomass and biogenic sources (Kirillova et al., 2013) but the

relative enrichment in the stable (δ13C) carbon isotope points

largely to aged primary biomass emissions sources (Bosch et

al., 2014). We estimate the simulated biomass contribution

to OC at Hanimaadhoo to be ∼ 50–70 % for baseline simu-

lations (res_base and res_monthly) and∼ 70–80 % for simu-

lations where residential carbonaceous emissions have been

doubled.

3.3 Health impacts of residential emissions

Figure 9 shows the simulated annual excess premature mor-

tality due to exposure to ambient PM2.5 from residential

emissions in the year 2000 for the baseline simulation. Great-

est mortality is simulated over regions with substantial res-

Figure 10. Simulated global annual premature mortality (cardiopul-

monary diseases and lung cancer for persons over the age of

30 years) due to exposure to ambient PM2.5 from residential emis-

sions. Results are shown for standard emissions (res_base and

res_monthly) and where residential emissions have been doubled

(res_× 2 and res_monthly_× 2). Mortality is shown for Eastern Eu-

rope and the Russian Federation (EEurope), Africa (Africa), South

Asia (SAsia), Southeast Asia (SEAsia), East Asia (EAsia), and the

rest of the world (as defined by the coloured regions in Fig. 2).

idential emissions and high population densities, notably

parts of Eastern Europe, the Russian Federation, South Asia,

and East Asia. Table 2 reports total global values for an-

nual mortality due to residential emissions. For the base-

line simulation, we estimate a total global annual mortality

of 315 000 (132 000–508 000, 5th to 95th percentile uncer-

tainty range). The simulation with monthly varying emis-

sions (res_monthly) results in total global annual mortality

of 308 000 (113 300–497 000), only a 2 % difference from

the baseline estimate. Uncertainty in the magnitude of resi-

dential emissions causes substantial uncertainty in the sim-

ulated impact on human health. When residential carbona-

ceous emissions are doubled, annual premature mortality

increases by 65 % to 519 000 (193 000–830 000) with an-

nual mean emissions and by 68 % to 517 000 (192 000–

827 000) with monthly varying emissions. Therefore, un-

certainty in the emission budget and uncertainty in the

health impacts of PM (as specified by 95 % confidence in-

tervals in the cause-specific coefficients) result in similar

uncertainties in estimated global mortality. The CRF func-

tion treats all aerosol components as equally harmful, so

simulations where residential emissions of POM, BC, and

SO2 are increased individually show that health effects are

most sensitive to uncertainty in POM emissions because

this component dominates the total emission mass. Doubling

POM emissions (res_POM× 2) increases estimated prema-

ture mortality by 50 %, whereas doubling BC emissions

(res_BC× 2) results in an 11 % increase and doubling SO2

emissions (res_SO2× 2) leads to a 6.5 % increase.

Figure 10 shows simulated annual total mortality by re-

gion. For the baseline simulation, we estimate that resi-
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Figure 11. Simulated absolute and percentage change in annual mean surface (a–b) and zonal (c–d) number concentration (N3; greater

than 3 nm dry diameter) due to residential emissions (res_base), relative to an equivalent simulation where residential emissions have been

removed (res_base_off).

dential emissions cause the greatest mortality in East Asia

with 121 075 (44 596–195 443, 95 % confidence intervals)

annual deaths – 38 % of global mortalities due to residen-

tial emissions. We also calculate substantial health effects in

other regions, with 72 890 (26 891–117 360) annual deaths in

South Asia (28 % of global mortalities) and 69 757 (25 714–

112 447) in Eastern Europe and Russia (22 % of global mor-

talities). Elsewhere we estimate lower mortality with 16 723

(6152–27 018) annual deaths in Southeast Asia (5 %) and

4791 (1751–7784) in sub-Saharan Africa (2 %). Annual pre-

mature mortality in sub-Saharan Africa is less than in Asia

due to a smaller contribution of residential emissions to

PM2.5 concentrations (Fig. 7), combined with typically lower

population densities, lower baseline mortality rates for lung

cancer and cardiopulmonary disease, and a smaller fraction

of the population over 30 years of age.

To our knowledge, this is the first study of the global ex-

cess mortality due to ambient PM2.5 from both residential

cooking and heating emissions. A recent study by Chafe et

al. (2014) concluded that ambient PM2.5 from RSF cook-

ing emissions resulted in 420 000 annual excess deaths in

2005 and 370 000 annual excess deaths in 2010. Chafe et

al. (2014) also simulated lower mortality in sub-Saharan

Africa (10 800 deaths in 2005) compared to Asia, consistent

with our findings. The regions where we estimate the largest

health impacts due to residential emissions are dominated by

RSF emissions. In East Asia, residential emissions are dom-

inated by both residential coal and biofuel sources whereas

in South Asia emissions are dominated by biofuel sources

(Bond et al., 2013).

3.4 Impact of residential emissions on total particle

number and N50 concentrations

Figure 11 shows the change in annual mean surface and zonal

mean particle number concentration (N3; particles greater

than 3 nm dry diameter) due to residential emissions for the

baseline simulation. Residential emissions increase N3 con-

centrations over source regions by up to 800 cm−3 due to

primary emitted particles. Downwind of source regions, N3

concentrations are reduced by up to ∼ 400 cm−3. This re-

duction is caused by primary particles acting as a coagula-

tion sink for nucleated particles and a condensation sink for

nucleating and condensing vapours, suppressing new parti-

cle formation (Spracklen et al., 2006), which is broadly con-

sistent with the findings of Kodros et al. (2015) for particle

number concentrations due to the effect of biofuel emissions.

Residential emissions decrease N3 concentrations in the FT

(> 500 hPa) by up to 100 cm−3 (7 %) due to suppression of

nucleation and growth from reduced availability of H2SO4

vapour due to increased condensation on primary particles.
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Figure 12. Simulated absolute and percentage change in annual mean surface (a–b) and zonal (c–d) soluble N50 concentrations due to

residential emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

In the baseline simulation, residential emissions reduce

annual global mean N3 concentrations by 1.0 % (Table 2).

When activation BLN is switched off (res_BHN), this sup-

pression is no longer important, and residential emissions in-

crease annual global mean N3 concentrations by 5.7 %. The

impact of residential emissions on global particle number

depends on the assumed particle size of primary carbona-

ceous emissions. When residential carbonaceous emissions

are emitted at smaller sizes (res_aero and res_small), global

mean N3 concentrations are increased by 2.4 and 164 % re-

spectively. This is because a greater number of particles are

being emitted per emission mass compared to the baseline

simulation.

Figure 12 shows the impact of residential emissions on

surface and zonal mean soluble N50 number concentrations

for the baseline simulation. Residential emissions increase

N50 concentrations over source regions of East Asia, South

Asia, and Eastern Europe by up to 300–500 cm−3. Simu-

lated N50 concentrations are increased by up to 20 % in the

Arctic, Eastern Europe, Russian Federation, North Africa,

and South Asia. Despite high absolute changes, fractional

changes in N50 concentration over East Asia (e.g. China) are

smaller (< 15 %) because of higher baseline N50 in this re-

gion from other sector emissions (e.g. from industry). N50

concentrations increase globally due to residential emissions,

but small reductions (< 5 %) are simulated in the remote

Southern Ocean because of the reduction in the amount of

H2SO4 and condensable vapour available for nucleation and

growth in FT, which results in reduced entrainment of nu-

cleated particles into the boundary layer. Absolute and frac-

tional changes in zonal mean N50 are greatest between 0 and

60◦ N and below 500 hPa.

Table 2 reports the global annual mean change in N50

concentrations between different simulations. In the baseline

simulation, residential emissions increase global mean sur-

face N50 by ∼ 5 %. When primary residential carbonaceous

particles are emitted at smaller sizes, residential emissions

cause a greater increase in N50 concentrations, with annual

global mean N50 concentrations increasing by ∼ 20 % in the

simulation with smallest particle size (res_small). Emitting

particles at larger sizes results in a smaller increase in global

meanN50 (3.1 %) because large particles are more efficiently

scavenged. The sensitivity of global mean N50 concentra-

tions to assumptions about emitted particle size is consistent

with previous studies (Adams and Seinfeld, 2003; Spracklen

et al., 2005b, 2011a). When residential carbonaceous aerosol

emissions are doubled, residential emissions increase global

annual mean N50 by ∼ 6.3 % (res_× 2). Simulations where

individual carbonaceous components are doubled separately

(res_BC× 2 and (res_POM× 2) show thatN50 is mainly sen-

sitive to change in OC emissions which dominate the car-

bonaceous aerosol mass. When residential SO2 emissions are

doubled, residential emissions increase global annual mean

N50 by 6.5 %. When activation BLN is assumed not to oc-
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Figure 13. Simulated absolute and percentage change in annual mean at low cloud height (850–900 hPa) (a–b) and zonal (c–d) CDNC due

to residential emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

cur, residential emissions increase global annual mean N50

by 6.5 % relative to the simulation with no residential emis-

sions. This greater sensitivity is because the baseline N50

concentrations without BLN are lower (287.4 cm−3) than the

baseline simulation (364.6 cm−3).

3.5 Impact of residential emissions on cloud droplet

number concentrations

Figure 13 shows the impact of residential emissions on an-

nual mean low-cloud level (850–900 hPa) and zonal mean

CDNC for the baseline simulation. Residential emissions in-

crease low-cloud level CDNCs by 20–100 cm−3 over source

regions. Smaller absolute and percentage changes in CDNC

are simulated over regions with greater baseline CDNCs due

to CDNC saturation effects. In contrast, CDNCs increases of

20 % are simulated over regions with low simulated back-

ground CDNCs, including parts of East Africa. Simulated

absolute increases in zonal mean CDNC are greatest be-

tween 0 and 60◦ N below 500 hPa, whereas greatest frac-

tional changes occur in the Arctic (6–8 %) due to low back-

ground concentrations. Small reductions in CDNC are simu-

lated in the FT (∼−2 %) and in the remote Southern Ocean

(1–2 %) at cloud level. This is caused by suppressed nucle-

ation in the FT.

In the baseline simulation, residential emissions increase

global annual low-cloud level CDNC by 2.1 % (Table 2).

Uncertainty in the emitted particle size of primary carbona-

ceous emissions causes most of the uncertainty in simulated

CDNC. When residential carbonaceous particles are emitted

at smaller sizes (res_small) emissions increase global annual

mean CDNC by 20 %. Emitting particles at smaller sizes re-

sulted in greater N50 concentrations, meaning more CCN-

sized particles are available to activate. While larger parti-

cle sizes can active cloud drops more easily compared to

smaller particles, large particles will deplete available wa-

ter vapour more quickly, which will lower SSmax, leading to

a suppression of small particles being activated. When ac-

tivation BLN is switched off (res_BHN), residential emis-

sions cause a greater increase in CDNC (3 %) compared to

the baseline simulation, due to lower background CDNCs.

Annual mean CDNC are increased by +2.7 % when primary

carbonaceous emissions are doubled (res_× 2), but greater

increases (+3.3 %) are simulated when residential SO2 is

doubled separately (res_SO2× 2). This suggests that residen-

tial SO2 is having a greater effect on CDNC compared to car-

bonaceous emissions because the small size distribution of

secondary sulfate is more efficient in the activation of cloud

drops.

3.6 Radiative effects of residential emissions

Figure 14 shows annual mean all-sky TOA DRE and first

AIE due to residential emissions for the baseline simulation.
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Figure 14. Annual mean all-sky direct radiative effect (DRE) (left panel) and first aerosol indirect effect (AIE) (right panel) due to residential

emissions (res_base), relative to an equivalent simulation where residential emissions have been removed (res_base_off).

Figure 15. Global annual mean all-sky direct radiative effect (DRE)

(red) and first aerosol indirect effect (AIE) (blue) for all model sim-

ulations due to the impact of residential combustion emission, rel-

ative to simulations where residential combustion emissions have

been removed. DRE and AIE values for each simulation are detailed

in Table 2.

Residential emissions result in a negative (cooling) annual

mean DRE over large regions of South Asia, East Asia, sub-

Saharan Africa, and parts of southern Europe, with values as

large as −200 mW m−2. The simulated net negative DRE in

South Asia and East Asia is consistent with a previous study

(Aunan et al., 2009). In contrast, over parts of Eastern Europe

and the Russian Federation, North Africa, the Middle East,

and Southeast Asia, residential emissions lead to a positive

DRE. Residential emissions cause a negative first AIE over

most regions, with values as large as −200 mW m−2 over

eastern Africa, Eastern Europe, and West Africa. Small posi-

tive AIE (< 40 mW m−2) is simulated in the remote Southern

Ocean due to reductions in CDNC as mentioned in Sect. 3.5.

Figure 15 compares the annual mean all-sky DRE and

first AIE across the different model simulations (also re-

ported in Table 2). The simulated global annual mean DRE

has an uncertain sign, with our estimates between −66 and

+85 mW m−2. The baseline simulation results in a global

mean DRE of −5 mW m−2, similar to the simulation us-

ing monthly varying emissions (−8 mW m−2). Our estimates

differ somewhat to Kodros et al. (2015), who found a ho-

mogeneous optical mixing state produced a positive DRE of

+15 mW m−2 for biofuel emissions; however, because res-

idential emissions differ to biofuel emissions, comparisons

become problematic. We therefore assume that differences

in radiative effect compared to Kodros et al. (2015) are likely

dominated by differences in emissions used and differences

in the optical calculation. Doubling residential carbonaceous

emissions, but keeping SO2 emissions constant, results in a

positive global annual mean DRE (+21 mW m−2 for res_× 2

and +10 mW m−2 for res_monthly_× 2). This suggests that

the carbonaceous (BC and POM) component of residen-

tial aerosol in our model exerts a positive DRE, but this is

offset by cooling from SO2 emissions. Doubling only BC

emissions leads to a stronger positive DRE (+85 mW m−2),

whereas negative DRE are simulated for doubling only POM

(−66 mW m−2) or SO2 (−43 mW m−2) emissions. The DRE

is also sensitive to emitted particle size, resulting in positive

global mean DRE of between +1 and +63 mW m−2 when

carbonaceous particles are emitted at smaller sizes (res_aero

and res_small respectively). This change in sign to a posi-

tive DRE can be attributed to reduced removal rates for car-

bonaceous particles emitted at smaller sizes, which leads to

larger BC burden, particularly in the FT where BC influ-

ence on DRE is most efficient. Residential emissions ex-

ert a negative (cooling) but uncertain global annual mean

first AIE, estimated at between −502 and −16 mW m−2.

The baseline simulation results in a global mean first AIE

of −25 mW m−2, similar to the simulation using monthly

varying emissions (−20 mW m−2). Emitting residential car-

bonaceous aerosol at small sizes contributes most of the

uncertainly to simulated first AIE, with estimates between

−46 mW m−2 (res_aero) and−502 mW m−2 (res_small) due

to a greater increase in global CDNC. We find little sen-

sitivity of the AIE to changes in carbonaceous emission

mass: doubling carbonaceous emissions (res_× 2) changes
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AIE by less than 2 mW m−2 (∼ 10 %) due to limited changes

in CDNC. In contrast, doubling SO2 emissions leads to the

greater negative AIE (−45 mW m−2) due to greater global

contribution to CDNCs.

4 Discussion and conclusions

We used a global aerosol microphysics model (GLOMAP)

to quantify the impacts of residential emissions on ambi-

ent aerosol, human health, and climate in the year 2000. We

tested the sensitivity of simulated aerosol to uncertainty in

emission amount and seasonal variability, emitted primary

carbonaceous aerosol size distributions, and the impact of

particle formation.

To evaluate model simulations we synthesised in situ ob-

servations of BC, OC, and PM2.5 concentrations and aerosol

number size distribution. The baseline simulation underes-

timated observed BC, OC, and PM2.5 concentrations, with

the largest underestimation over East Asia and South Asia,

consistent with other modelling studies (Fu et al., 2012;

Moorthy et al., 2013; Pan et al., 2015). Applying monthly

varying emissions (MACCity emission data set), in place of

annual mean emissions (ACCMIP emission), has little im-

provement on overall model bias but does improve the abil-

ity of the model to simulate the observed seasonal variabil-

ity of aerosol. Doubling residential carbonaceous combus-

tion emissions improved model agreement, but GLOMAP

still underestimated BC, OC, and PM2.5 concentrations. The

model typically had a larger underestimation of OC com-

pared to BC concentrations, possibly due to uncertainty in

emission factors or potentially due to an underestimation of

anthropogenic SOA (Spracklen et al., 2011b).

We used source apportionment studies using 14C non-

fossil BC analysis at the island site of Hanimaadhoo in the

Indian Ocean as an additional constraint of the model. Non-

fossil sources have been estimated to contribute 46–73 % at

this location. This large range makes it difficult to constrain

the model. With standard emissions (ACCMIP and MACC-

ity), we estimate a non-fossil fraction of 57–65 %, whereas

when residential BC emissions are doubled, we simulate a

non-fossil fraction of 72–79 %.

Overall, our results suggest that residential emissions may

be underestimated in the MACCity and ACCMIP data sets.

Uncertainty in aerosol removal processes and transport and

missing anthropogenic SOA and nitrate formation may all

contribute to underestimation of aerosol mass. Nevertheless,

previous modelling studies have also suggested that residen-

tial emission data sets underestimate emissions (Park et al.,

2005; Koch et al., 2009; Ganguly et al., 2009; Menon et al.,

2010; Bergström et al., 2012; Nair et al., 2012; Fu et al.,

2012; Moorthy et al., 2013; Bond et al., 2013; Pan et al.,

2015). The ACCMIP and MACCity emission data sets are

constructed using national data on fuel use, which implies

uniform per capita fuel consumption at the country level. Us-

ing subnational fuel use data, R. Wang et al. (2014) showed

that the MACCity data set underestimated residential emis-

sions over source regions in Asia. Other studies have also

had to increase residential emissions over Europe in order to

match source apportionment studies (Denier van der Gon et

al., 2015). However, Wang et al. (2013) suggested that model

bias over China could partly be attributed to coarse model

resolution and comparison against urban data and monthly

mean observations. Kumar et al. (2015) also showed that a

high-resolution model was able simulate reasonable BC dis-

tributions in South Asian region. We have restricted our anal-

ysis to rural and background sites but use monthly mean

BC and OC data and a relatively coarse-resolution global

model. To help resolve uncertainties in residential emission

budget, higher-resolution emission inventories (using sub-

national fuel use data) and higher-resolution model simula-

tions evaluated against long-term and high temporal resolu-

tion data are required. In many regions, observational data

are lacking; there is an urgent requirement for detailed char-

acterisation of the chemical, physical, and optical properties

of aerosol in regions impacted by residential emissions, par-

ticularly in the developing world.

Particle number concentrations are generally predicted

within a factor of 2 at the limited number of locations where

observations are available. Simulated particle number is very

sensitive to emitted particle size, which has a large un-

certainty. Emitting residential carbonaceous particles at the

small end of the range reported by Bond et al. (2006) (ge-

ometric mean diameter= 20 nm) substantially overestimates

observed particle number, suggesting this assumption is not

appropriate for coarse-resolution global models.

Residential emissions contribute substantially to simulated

annual mean surface PM concentrations. Greatest fractional

contributions (15 to > 40 %) to surface PM2.5 concentra-

tions are simulated over Eastern Europe (including parts of

the Russian Federation), parts of East Africa, South Asia,

and East Asia. In these regions residential emissions con-

tribute> 50 % to total simulated BC and POM concentra-

tions. These findings support previous studies suggesting a

large contribution of residential emissions to PM2.5 concen-

trations over Asia (Venkataraman et al., 2005; Cao et al.,

2006; Klimont et al., 2009; Lei et al., 2011; Cui et al., 2015;

Fu et al., 2012; Gustafsson et al., 2009; B. Chen et al., 2013).

Our findings suggest that reductions in residential emissions

need to be considered alongside mitigation strategies for

other PM sources (e.g. industry and transport) within Asia

and in even more developed regions such as parts of Europe

(Fountoukis et al., 2014).

We estimated the impact of residential emissions on hu-

man health due to increased ambient PM2.5 concentrations

and tested the sensitivity to the emission data set and emis-

sion budget. We used a log-linear model of relative risk

from the epidemiological literature (Ostro, 2004) to relate

simulated changes in ambient PM2.5 concentrations to long-

term excess premature mortality for cardiopulmonary dis-
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ease and lung cancer for adults (> 30 years of age). In the

baseline simulation, we estimate that residential emissions

cause 315 000 (132 000–508 000, 5th to 95th percentile un-

certainty range) premature mortalities each year. Applying

a seasonal cycle to emissions changed our estimate by less

than 2 %, with residential emissions resulting in 308 000

(113 300–497 000) premature mortalities each year. Our es-

timate for residential emissions is equivalent to 8 % of the

total mortality attributed to exposure to ambient PM2.5 from

all anthropogenic sources (WHO, 2014b), although we note

that methodologies in the two studies are different. Doubling

residential carbonaceous emissions, which improved model

comparison against observed BC and POM concentrations,

increases simulated excess mortality by ∼ 64 % to 516 600

(192 000–827 000). Simulated mortality is greatest over re-

gions with large residential emissions and high population

densities including East Asia, South Asia, Eastern Europe,

and the Russian Federation. We find that half of simulated

global excess mortality from residential emissions occurs in

China and India alone. Our results are consistent with a pre-

vious estimate of RSF cooking emissions on premature mor-

tality (Chafe et al., 2014). The CRFs that are used to esti-

mate long-term premature mortality are uncertain. The log-

linear function used here is based on epidemiological stud-

ies from North America (Pope III et al., 2002), resulting in

greater uncertainty when these functions are extrapolated to

other regions (Silva et al., 2013). However, epidemiological

studies are not available for all regions, so global mortality

estimates often use functions based on these North Amer-

ican studies. Overall, we find that uncertainty in the rela-

tionship between PM concentrations and health impacts (as

quantified by the 95th percentile range given by the log-linear

model) and our measure of uncertainty in emissions (esti-

mated here as a factor of 2 uncertainty) result in compara-

ble uncertainty in the estimated global number of premature

mortalities. Future work therefore needs to improve both our

understanding of residential emissions and the relationships

between enhanced PM concentrations and human health im-

pacts. We also note that the coarse resolution of our global

model likely provides a conservative estimate of premature

mortality due to residential emissions because it cannot simu-

late high concentrations associated with highly populated ur-

ban and semi-urban areas. Further simulations using higher-

resolution models and emission inventories will be required

to accurately simulate PM2.5 concentrations in urban and

semi-urban areas. Health effects using more recent CRFs that

relate RR of disease to changes in PM2.5 over a large range of

concentration exposures (Burnett et al., 2014) will also be re-

quired. In addition, exposure functions, such as the one used

in this study, treat all aerosol components as equally toxic,

but carbonaceous aerosol, which dominate residential emis-

sions, may be more toxic compared to inorganic or crustal

PM (Tuomisto et al., 2008). New exposure response func-

tions will therefore need to account for the different toxicity

of chemical components present in atmospheric aerosols.

We used an offline radiative transfer model to estimate the

radiative effect (RE) of aerosol from residential emissions.

We estimate that residential emissions exert a global annual

mean DRE of between −66 and +85 mW m−2. The simu-

lated global mean DRE is sensitive to the amount and ratio of

BC, POM, and SO2 in emissions. Doubling residential car-

bonaceous emissions, but keeping SO2 emissions constant,

results in a positive global annual mean DRE, suggesting that

the carbonaceous component of residential aerosol exerts a

net positive DRE in our simulations, offset by cooling from

SO2 emissions. We also find a positive DRE when primary

carbonaceous emissions are emitted at smaller sizes, but this

simulation overestimates observed aerosol number, suggest-

ing it is unrealistic. Discounting this simulation, we provide

a best estimate of global mean DRE due to residential com-

bustion of between−66 and+21 mW m−2 for the year 2000.

Residential emissions exert a simulated global annual

mean first AIE of between −502 and −16 mW m−2. Un-

certainty in emitted primary carbonaceous particle size con-

tributes most of the uncertainly to calculated AIE. Emitting

carbonaceous aerosol at smaller sizes results in greater simu-

lated N50 and CDNC and a strong negative AIE as well as in

overestimation of observed particle number, suggesting that

emission at very small sizes is not realistic. We find little

sensitivity to annual mean first AIE due changes in carbona-

ceous emission mass compared to the baseline simulation.

Doubling carbonaceous emissions changes AIE by less than

2 mW m−2 (∼ 10 %), highlighting a non-linear relationship

between magnitude of emission and first AIE. Our best esti-

mate of the first AIE due to residential emissions is between

−52 and −16 mW m−2 in the year 2000.

We have restricted our analysis of the RE of residential

emissions to the aerosol DRE and first AIE. We treat POM

aerosol as scattering, although a fraction of POM aerosol

may absorb radiation (Kirchstetter et al., 2004; Chen and

Bond, 2010; Arola et al., 2011; X. Wang et al., 2014). Fur-

thermore, our DRE analysis is limited because we do not

fully explore the full range of optical mixing states for res-

idential emissions. We assume that BC is mixed homoge-

neously with scattering species, which provides an upper

limit for BC DRE (Jacobson, 2001). A full investigation of

the different optical mixing states commonly used in global

models, such as in Kodros et al. (2015), would yield a better

understanding of DRE from residential emissions. Because

we use an offline radiative transfer model, we also do not

treat cloud lifetime (second indirect effect) or semi-direct ef-

fects (Koch and Del Genio, 2010) and cannot explore ad-

ditional impacts such as the weakening of the South Asia

monsoon, altering of precipitation patterns (Ramanathan et

al., 2005), tropical cyclone intensification (Evan et al., 2011),

and accelerated melting of glaciers in the Himalayas (Xu et

al., 2009).

The introduction of cleaner and fuel efficient residential

combustion technologies, processed solid fuels, and clean al-

ternative energy (e.g. natural gas, electricity) has been sug-
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gested as one of the fastest ways to reduce residential emis-

sions (UNEP, 2011), thus slowing climate change and im-

proving air quality and human health (WHO, 2009). Our

study shows that the complete elimination of residential

emissions would result in substantially improved PM air

quality and human health across large regions of the world

regardless of the uncertainties between the different model

simulations explored here.

We have shown that residential combustion emissions ex-

ert an uncertain RE, which leads to uncertainties in predicting

the climate impact of emission reductions. Our work sug-

gests that residential emission flux, chemical composition,

and carbonaceous size distributions need to be better charac-

terised in order to constrain the likely climate impact. Given

these uncertainties, the missing processes within our model

framework (described above), and the use of an offline radia-

tive transfer model, it is difficult asses the full climate im-

pacts due to residential emissions. In addition, because we

find residential emission amount and resulting RE (particu-

larly aerosol–cloud effects) are not linearly related, our re-

sults cannot be used to estimate the impacts associated with

smaller, realistic reductions in residential emissions. Future

research is needed to explore the air quality and climate im-

pact of realistic emission reductions scenarios that could po-

tentially be achieved through the implementation of cleaner

combustion technologies and clean alternative fuels.

More people are using RSF for cooking than at any other

point in human history, even though the fraction of the popu-

lation using these fuels is falling (Bonjour et al., 2013). Over

the next few decades (2005–2030), combustion of RSF is

projected to increase in South Asia and Africa due to in-

creases in human population (UNEP, 2011). We have re-

ported human health and climate impacts for the year 2000,

but in China, residential emissions have increased 34 % dur-

ing the period 2000–2012 due to the growth of coal consump-

tion (Cui et al., 2015). The use of biomass for heating is also

expected to increase in developed countries such as in West-

ern Europe because of rising fossil fuel prices and use of

renewable biomass under climate change mitigation policy

(Denier van der Gon et al., 2015). The impact of residential

emissions on human health and climate is, therefore, likely

to persist in the future unless effective mitigation to address

the dependence on RSFs is taken.

Atmos. Chem. Phys., 16, 873–905, 2016 www.atmos-chem-phys.net/16/873/2016/



E. W. Butt et al.: The impact of residential combustion emissions 899

Appendix A

Table A1. Acronyms used in this study.

Acronym Description

ACCMIP Atmospheric Chemistry and Climate Model Intercomparison Project

AF Attributable fraction

AIE Aerosol indirect effect

BC Black carbon

BHN Binary homogenous nucleation

BLN Boundary layer nucleation

CCN Cloud condensation nuclei

CDNC Cloud droplet number concentration

CPD Cardiopulmonary disease

CRF Concentration response functions

DRE Direct radiative effect

EC Elemental carbon

FT Free troposphere

LC Lung cancer

LPG Liquefied petroleum gas

LW Longwave

MACCity MACC/CityZEN project

NH Northern Hemisphere

N3 Number of particles greater than 3 nm dry diameter

N50 Number of particles greater than 50 nm dry diameter

N100 Number of particles greater than 100 nm dry diameter

NMBF Normalised mean bias factor

OC Organic carbon

PM Particulate matter

PM2.5 Particulate matter with an aerodynamic dry diameter of < 2.5 µm

POM Particulate organic matter

RE Radiative effect

RR Relative risk

RSF Residential solid fuel

SOA Secondary organic aerosol

SW Shortwave

TOA Top of atmosphere
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