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Abstract Although the notion of systemic risk gained

prominence with respect to financial systems, it is a generic

term that refers to risks of increasing importance in many

domains—risks that cannot be tackled by conventional

techniques of risk management and governance. We build

on a domain-overarching definition of systemic risks by

highlighting crucial properties that distinguish them from

conventional risks and plain disasters. References to typical

examples from various domains are included. Common

features of systemic risks in different domains—such as the

role of agents and emergence phenomena, tipping and

cascading, parameters indicating instability, and historic-

ity—turn out to be more than noncommittal empirical

observations. Rather these features can be related to fun-

damental theory for relatively simple and well-understood

systems in physics and chemistry. A crucial mechanism is

the breakdown of macroscopic patterns of whole systems

due to feedback reinforcing actions of agents on the

microlevel, where the reinforcement is triggered by

boundary conditions moving beyond critical tipping points.

Throughout the whole article, emphasis is placed on the

role of complexity science as a basis for unifying the

phenomena of systemic risks in widely different domains.

Keywords Complexity science � Integrated risk

governance � Multiagent modeling � Systemic risks

1 Introduction

The history of the last four decades has been a success

story in terms of conventional risk management, which is

well documented. Taking the example of Germany, the

number of fatal accidents at work decreased from almost

5000 in 1960 to less than 400 in 2014, the number of traffic

accidents from 22,000 in 1972 to 3700 in 2014, and the

number of fatal heart attacks and strokes from 109 cases

per 100,000 to 62 in the time period between 1992 and

2002 (Renn 2014). In addition, the number of chronic ill-

nesses as well as fatal diseases from environmental pollu-

tion or accidents has steadily declined over the past three

decades.

Conventional risks in terms of accidents and most ill-

nesses have been successfully tamed, at least in core seg-

ments of fully industrialized societies (Rosa et al. 2014). In

such situations, a fire, for example, may break out in a

school, which could lead to the direct loss of lives and of

the facility and to the interruption of the affected children’s

education. In an age when fires are prevented from con-

suming entire cities, however, the impact of almost any

blaze is likely to be limited. When fire breaks out at a

school, safety equipment, sprinklers, and routine fire drills

(some of the basic tools of conventional risk management)
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are likely to be effective. With appropriate safeguards in

place, the odds are minimal that lives will be lost, or even

that anyone will suffer serious physical harm. What is

more, the economic cost is almost certain to be limited by

insurance claims and contingency budgets, while disaster

planning means that the lives of teachers and students are

disrupted for probably no more than a few days. The main

task with regards to conventional risks is to enable

humankind as a whole to share the capacities for their

management and governance that are in principle available.

The picture becomes less favorable if we look at glob-

ally interconnected, nonlinear risks such as those posed, for

example, by climate change or the present global financial

system, and the closely related growing inequalities

between rich and poor. Indeed, current societies are chal-

lenged by a number of pressing systemic risks. Some arise

from global environmental change (Shi et al. 2010), in

particular climate change (Bendito and Barrios 2016),

others from social inequality (Milanovic 2016), from

breakdown of infrastructures (Gheorghe et al. 2007; Fekete

2011), including financial systems (Reinhart and Rogoff

2009), or from threat to biological diversity (Polidoro et al.

2010). Related developments include new political transi-

tions towards post-democratic regimes (Crouch 2004) and

the emergence of post-factual tendencies that underesti-

mate the value of plurality (Keyes 2004). In order to take

account of this situation, especially with regard to natural

hazard-induced as well as human-made disasters, the

Organization for Economic Co-operation and Development

(OECD) introduced the new category of ‘‘systemic risk’’

(OECD 2003). It is this category that has led Shi et al.

(2017) to argue for global systemic risk management in

view of future transboundary disasters.

A widely-used definition of a systemic risk was pro-

vided by Kaufman und Scott (2003). Although they defined

systemic risks in the context of financial systems, their

definition can be expanded to accommodate much broader

systems, like the coupled climate-humankind system.

‘‘Systemic risk refers to the risk or probability of break-

downs in an entire system, as opposed to breakdowns in

individual parts or components, and is evidenced by co-

movements (correlation) among most or all parts’’ (Kauf-

man and Scott 2003, p. 372).

The Kaufman–Scott definition captures the starting

point for the largest body of literature on systemic risks

available so far: the one that deals with systemic risks in

financial markets (Anand 2016). In this literature, two

different threads can be distinguished: one dealing with the

quantification of risks, and one with the causalities behind

them.

The quantification of risk lies at the origins of both

modern risk management and the scientific understanding

of risk. Insurance would be impossible without it. It

became possible with the development of probability the-

ory and the discovery that often human preferences can be

represented by utility indices (in standard practices of cost-

benefit analysis, these indices are usually taken to corre-

spond to amounts of money). On this basis, risk can be

quantified as the expected value of utility given a proba-

bility distribution over possible outcomes.

Conventional risks are risks that at least in principle can

be so quantified. The risk of fatal heart attacks and strokes

in Germany in 1992, for example, can be quantified as an

expected value of roughly 80,000 events, and progress in

risk management can be quantified through an expected

value of roughly 50,000 events 10 years later (Renn 2014).

This way of quantifying risk presupposes two things. First,

a well-defined event space with associated probabilities. In

the case of those fatal events, the event space can be taken

to be the set of natural numbers from 0 to the total popu-

lation, where only numbers closed to the expected values

will be assigned a nonzero probability. The second pre-

supposition is the existence of sufficiently well-defined

utility indices. In the present case, one can simply take the

number of events as the relevant index.

Systemic risks in finance made both presuppositions

questionable, while increasing the need for regulators and

bank managers to quantify risks. Data are insufficient to

produce reasonably sound probability estimates, and even a

relevant event space is hard to define. As for utility indices,

preferences differ between the different actors, including

organizations and individuals. Moreover, the relevant

preferences are neither stable nor complete, and perhaps

not even always consistent.

Building on the seminal work by Artzner et al. (1999),

considerable advances have been made with regard to the

quantification of financial risks, although many open ques-

tions remain (Föllmer and Schied 2002; Alon and Schmeidler

2014; Zhang et al. 2014; Biagini et al. 2018). A good intro-

ductory overview is given by Gilboa et al. (2008). Although

this aspect of the systemic risks challenge calls for much

additional work, we will not address it in the present article.

We want to address the second topic found in the lit-

erature on systemic risks in finance: the quest for causal

structures. Here, too, major advances have been made,

mainly by using network approaches to contagion pro-

cesses (Feinstein and El-Masri 2017; Amini and Minca

2016). Interestingly, this work has led to synergies with

studies of systemic risks in critical infrastructures (Kröger

2008; Cassidy et al. 2016; Mureddu et al. 2016). Cross-

fertilization across disciplines has also resulted from work

on biodiversity in ecology (Haldane and May 2011), and

more generally with the study of complex systems (Mar-

kose et al. 2012; Battiston et al. 2016).

Building on this line of research, we focus on the causal

mechanisms involved in complex systems where networks
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of agents—be they molecules, organisms, people, or

organizations—display a double dynamic: a large number

of microinteractions and a small number of macropro-

cesses. The latter can result in periods of macroconfigu-

ration stabilized by suitable external conditions. When

these conditions change beyond a certain range, the

macroconfiguration breaks down, and the overall dynamics

can be shaped by the amplification of microevents until a

new macroconfiguration has been reached. The main idea

of the present article is that this kind of critical transition

plays a key role in many, perhaps all, systemic risks. In

other word, we suggest a homomorphism between impor-

tant aspects of systemic risks in different domains.

Against this background, the Kaufman–Scott definition

can be further improved. Thinking of a car as a system of

parts, the total breakdown of a car would certainly not

qualify as a systemic risk. On the other hand, the partial

breakdown of the world’s finance system experienced in

2007 and the following years is a paradigmatic example of

a systemic risk, although the system as a whole clearly did

not break down.

Renn et al. (2017) have therefore suggested use of a

more Wittgensteinian approach by specifying the proper-

ties that are associated with systemic risks without claim-

ing to have a complete or mutually exhaustive list. The

main thrust of systemic risks, however, is clear: systemic

risk refers to the possibility of a catastrophic regime shift or

even breakdown of a global system that involves many

interacting elements that are poorly understood. This

dimension of a large potential threat within a complex web

of interacting elements is a key difference between sys-

temic and conventional risks.

Renn et al. (2017) emphasize four major properties of

systemic risks: they are (1) global in nature; (2) highly

interconnected and intertwined leading to complex causal

structures and dynamic evolutions; (3) nonlinear in the

cause-effect relationships and often show unknown tipping

points or tipping areas, and (4) stochastic in their effect

structure. Systemic risks tend to be underestimated and do

not attract the same amount of attention as catastrophic

events. The main reason for this is that complex structures

defy human intuition based on the assumption that

causality is linked to proximity in time and space. But

complexity implies that far-fetched and distant changes can

have major impacts on the system under scrutiny. Another

reason is that humans tend to learn by trial and error. Faced

with nonlinear systems with tipping points/areas, people

are encouraged to repeat their errors because the feedback

is uncritical for a long time. If one trespasses the tipping

point, however, the effect of error may be so dramatic that

learning from crisis is either impossible or extremely

costly. Furthermore, systemic risks touch upon the well-

known common pool problem: each actor contributes only

marginally to the systemic risk so there is no incentive to

change one’s behavior (Renn 2011). Finally, every actor

may win if he or she takes the free rider position and lets all

the others invest in reducing the risk, since all will in the

end share the benefits. So there are many reasons for sys-

temic risks to be underestimated or, at least, undermanaged

compared to conventional risks.

Another key characteristic that sets systemic risks apart

from conventional risks is that their negative impacts

(sometimes immediate and obvious, but often subtle and

latent) have the potential to trigger severe ripple effects

outside of the domain where the risk is located (OECD

2003). When a systemic risk becomes a calamity, the

resulting ripple effects can cause a dramatic sequence of

secondary and tertiary spin-off impacts (Kasperson et al.

2003). They may be felt in a wide range of systems

seemingly well buffered from each other, like real estate

and the health system, inflicting harm and damage in

domains far beyond their own. Industrial sectors, for

example, may suffer significant losses as a result of a

systemic risk as we witnessed in the financial crisis in the

aftermath of the Lehman Brothers collapse. Even fairly

healthy financial institutions were negatively affected and,

in the end, taxpayers had to pay the bill for poor institu-

tional design and the reckless behavior of a few.

Another example is the BSE (Bovine Spongiform

Encephalopathy) debacle in the United Kingdom, which

not only affected the farming industry but also the animal

feed industry, the national economy, public health proce-

dures, and politics (Wynne and Dressel 2001). People

refused to eat British beef, regardless of the tangible evi-

dence showing little danger to their health or safety.

Systemic risks represent wicked problems as they are

difficult to anticipate and identify, have no clear solutions,

and are seemingly intractable, often plagued by chronic

policy failures and intense disagreement (Nursimulu 2015).

They can trigger unexpected large-scale changes of a sys-

tem or imply uncontrollable large-scale threats to it (Hel-

bing 2010) and may cause ripple effects beyond the domain

in which the risks originally appear (Renn 2016). The

consequences of failing to appreciate and manage the

characteristics of complex global systems and problems

can be immense (Helbing 2012).

The following paragraphs present an attempt to take

advantage of insights from the natural sciences, notably

physics and chemistry, about complex systems and their

dynamics for studying the domain of large systemic risks

that include complex interactions between human and

natural systems that bridge ecological, social, natural, and

cultural domains. The objective is to develop a conceptual,

deductive approach to understand the generic fabrics of

systemic risks. Such an understanding stems from the

analysis of physical and chemical systems. These insights
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cannot be applied to societal processes one by one, but they

reveal generic patterns and clusters that serve as homo-

morphic prototypes valid for many complex domains. The

claim is not that the properties of physical systems can be

literally transferred to social systems, but that complex

structures and dynamics are characterized by typical pat-

terns that manifest themselves in a multitude of contexts in

the physical and social world. Similar to mathematical

equations, they may be considered a priori true in the

Kantian sense, yet it needs to be empirically proven whe-

ther they can be applied to different domains of reality.

2 Nonequilibrium Complexity

Systemic risks pertaining to systems of nature, technology,

and society often manifest themselves as dynamic macro-

scopic phenomena that result from actions of agents,

among each other and with their environment, on the

microlevel in a complex system. In this context, we use the

notion of agents in a most general perspective, ranging

from atoms and molecules in physical and chemical sys-

tems up to humans in socioeconomic systems. Clearly, the

possible interactions between such different agents vary

widely, from simple and well-understood physicochemical

interaction laws between molecules up to nonlocal, adap-

tive decisions and interactions including memory effects

within and among human individuals. It goes without

saying that such widely different interaction patterns pre-

clude any general predictive theory for the system’s

dynamic behavior and the associated systemic risks.

Inherent properties of complexity limit their predictability

and make them often counter-intuitive. Yet, and this is the

primary message of this communication, some very fun-

damental patterns of dynamic behavior do not depend

crucially on details of the agent’s interactions with the

remarkable effect that systems, with very different types of

agents, can show in terms of rather similar patterns of

dynamic behavior. We refer to this phenomenon as

homomorphism. This insight, together with using the

instruments of complexity science, will be shown to sup-

port significantly the understanding and governance of

systemic risks.

Complexity has many aspects and this is reflected by the

many different branches and instruments of complexity

science. In the context of systemic risks, we make use in

particular of those typically associated with dynamic

structure generation in open systems under strong external

and/or internal perturbations. We refer to such situations as

nonequilibrium with reference to the notion of equilibrium

typically used in physical chemistry: that is, a state without

any change of its macroscopic behavior over time in spite

of rapid and active dynamic processes on the microlevel.

They are characterized by tipping and cascading phenom-

ena along with dynamic pattern formation. We use the term

nonequilibrium complexity. Such processes have been

studied in detail and depth in the natural sciences, notably

physics and chemistry. Interestingly and most importantly,

as already mentioned above, it can be shown that the

principal patterns of behavior revealed there can be found

across all domains, from biology to ecology up to socioe-

conomics. Thus, for the benefit of analyzing systemic risks

in any domain, advantage can be taken of the detailed

knowledge accumulated by studies of relatively simple

systems in physics and chemistry, studies that would not be

possible in more complex systems such as those of biology,

ecology, or society. In the following paragraphs, we sum-

marize some of these insights of nonequilibrium com-

plexity relevant to systemic risks with the emphasis on

generating awareness of their provenience and the benefit

derived from recognizing this.

2.1 Some Common Features of Systemic Risks

A collection of empirical evidence associated with sys-

temic risks in the framework of nonequilibrium complexity

science reveals a fundamental homomorphism with respect

to their basic structures across all domains, based essen-

tially on universal strategies of information processing

between the agents and the global system. This opens up a

large body of empirical knowledge that forms the basis for

their understanding and analysis.

2.1.1 Agents and Emergence

Dynamic structures, associated with systemic risks, are

phenomena of emergence, typically appearing out of sys-

tem instability. They are collective effects resulting from

the elementary actions of the agents on the microlevel. So,

they are only observable on the macroscopic level, not on

the microlevel of the agents. In physicochemical systems,

single molecules do not display the coherent patterns

observable in flow or chemical reaction systems with a

large number of molecules; in social systems single indi-

viduals do not show the patterns of mass phenomena and

political mass radicalism frequently observed in situations

with many human individuals. Identifying the microlevel

of the agents for analysis of dynamic structure generation is

a matter of intelligent choice. Any system will display a

more or less complicated stratification over various levels

of interactions, and so it turns out that the adequate choice

of the microlevel is a matter of the theoretical or empirical

information that is available. To illustrate, it is instructive

to look at one of the most elementary and least stratified

model system of dynamic structure generation in physics—

the laser. The agents to consider are the atoms of the laser
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material and the photons of the light wave (Haken 1977). It

is the nonlinear and originally localized feedback interac-

tion between the atoms of the laser material and the pho-

tons of the light field that is responsible for the emergence

processes stabilizing the macroscopic light wave. Infor-

mation processing of the agents is affected by local sta-

tistical sampling from patterns that are able to spread over

the whole system. The interactions between these agents

are known from quantum-electrodynamics and so the

analysis can be based on this theory, and thus a full

understanding of the structure generation mechanisms can

be obtained. The importance of this analysis goes much

beyond this particular physical device. It constitutes a

metaphorical interpretation of these effects as a learning

and adapting behavior of the agents in principle. The laser

represents a model system that is rather informative and

instructive for dynamic structure generation in general and

for associated systemic risks in a wide variety of domains.

For autocatalytic chemical systems, a typical model

system for dynamic structure generation in chemistry, such

elementary information is not available in the general case.

The analysis of structure generation is thus rather based on

the mesolevel of empirical gross reactions for selected

molecular species and on their time evolution in terms of

associated rate equations. Strong nonlinear effects as pro-

vided by the autocatalytic reactions with the associated

feedback effects are a necessary condition for structure

generation in these systems (Prigogine and Lefever 1968).

By mechanisms in principle analogous to those in a laser,

initial and localized patterns such as stripes and rings of

alternating color spread over the whole system by infor-

mation processing, and lead to a global pattern in the

system.

It is rewarding to apply these fundamental insights about

the role of agents and their particular types of interactions

in dynamic structure generation, which are gained by

analyzing relatively simple physical and chemical systems,

to the much more complicated socioeconomic systems.

Here, agents may be organizations, human individuals,

social groups, and at whatever level for which proper

information is available or sensible modeling can be

applied. Besides structure generation by external control,

such as in the systems of physics and chemistry addressed

above, there are many examples of self-organized emer-

gence in social systems even without external impact.

Markets can be seen as emerging from the individual

actions of traders, business organizations as emerging from

the activities of their owners and employees, in addition to

the actions of groups such as legislators, lawyers, adver-

tisers, and suppliers. The choice of the agents is not sep-

arable from the definition of the interactions between them

and their environment. Although the agent’s interactions

are clearly entirely different from those physicochemical

systems mentioned above, basic mechanisms of dynamic

structure generation and pattern formation are pretty much

analogous. In socioeconomic systems, similar to the

physicochemical model systems, strong and reinforcing

interactions generate feedback loops and circular causality

between the macroscopic structures and the actions of the

agents. To paraphrase Clifford Geertz (1973, p. 5), we are

animals suspended in webs of meaning that we ourselves

have spun. Agents learn from and adapt to the environment

created by themselves. It is frequently the interaction of

human individuals as agents with a field of information

derived from the media, public opinion, or other sources

that stabilizes the structures in socioeconomic systems. In

this way, local patterns are again able to spread over the

whole system by appropriate information distribution.

2.1.2 Tipping and Cascading

The object of study in systemic risks is invariably a system

along with its boundaries. Boundary conditions may keep

the system in a stable macroscopic state with continuous

microdynamic change. But when the boundary conditions

exceed threshold values they can drive the system into a

regime of instability out of which new dynamic structures

may suddenly emerge when appropriate internal conditions

prevail. This phenomenon is referred to as tipping or as a

bifurcation.

In nonequilibrium thermodynamics as the appropriate

theory of molecular systems, it is shown that in such sit-

uations, unlike situations in equilibrium or close to it,

driving forces and resulting effects have a nonlinear rela-

tionship to each other. A potential function then no longer

exists (Prigogine 1980). As a consequence, small and

random fluctuations that are normally inconsequential may

trigger a dramatic change in behavior, referred to as a

phase transition. Molecular interactions like information

processing in a network spread the new state in a cascading

process over the whole system. A well-known example

from chemistry is the local emergence and subsequent

spatial cascading of a dynamical chemical structure, which

creates a regular chemical space-time pattern (Gray and

Scott 1990). Similar patterns are found in the study of

pandemics and the spread of disease (Chen et al. 2017).

Further examples are failures of infrastructure, such as the

electrical grid (Koonce et al. 2008), the breakdown of a

financial system (Hurd et al. 2016), or such phenomena as

public opinion formation or economic innovations (Wei-

dlich 2000).

Phenomenologically, an approach to such a tipping

point becomes noticeable by an amplification of fluctua-

tions. These fluctuations are of a random nature, which

makes the future of the system unpredictable in detail,

although the system normally can choose only out of a few
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macroscopic patterns. As a consequence of nonlinearity,

the average dynamical behavior of the system in such sit-

uations no longer corresponds to the average of the indi-

vidual activities of its agents. Rather, a new structure may

originate from the amplification of one particular micro-

scopic fluctuation at the right moment and under the right

conditions. A momentary individual activity can thus

determine the dynamic future of the macroscopic system.

These effects make intuitive predictions of system behavior

rather questionable. Tipping and cascading phenomena can

be and have been studied in detail in some prototype sys-

tems of physics and chemistry based on rigorous theory. In

more complex domains, for example, socioeconomics, we

observe essentially the same phenomena, a homomor-

phism, although a detailed theoretical analysis is still

missing. But recognizing the analogies paves the way for

an adequate ordering of the empirical observations during

dynamic pattern formation across domains.

2.1.3 Parameters Indicating Instability

An immediate, practically relevant consequence of trans-

ferring established knowledge from physics and chemistry

to more complex domains is the recognition that parame-

ters exist that indicate instability even in those domains

where there is no theory to directly provide them. As

theoretically established in physics and chemistry, the

dynamic structure generation in such unstable regimes is

initiated by selection processes on the microlevel. In the

course of elementary fluctuations, the system tests its

various modes of dynamic behavior, which may be con-

sidered as a population of macroscopic patterns. Hierar-

chies of time scales and strengths of interaction during the

elementary dynamics are responsible for a selection pro-

cess that stabilizes the new dynamic structures. The same

principles identified by rigorous theory in a laser, as well as

in flow or chemical pattern formation, are effective in other

domains.

In socioeconomic systems, such effects lead to the for-

mation of a stratification and topology of the system with

widely autonomous and interacting substructures such as

families, organizations, ethnic subgroups, and the like. As a

result of these selection processes only few modes of

behavior win the competition and become visible macro-

scopically. They can be described in terms of so-called

order parameters, that is, the relevant macroscopic vari-

ables for representing the dynamics of a system. This

results in a drastic reduction of complexity of the dynamics

close to tipping points as compared to the chaos on the

microlevel. In this sense, we witness the emergence of

order out of chaos (Prigogine and Stengers 1984).

It is therefore promising to look for simple macroscopic

parameters that describe the approach to instabilities.

Generally, such parameters are nondimensional in nature,

and balance enhancing and hindering effects by a suit-

able combination of external and internal quantities.

Examples from physics and chemistry are the Reynolds-

number or Rayleigh-number in flow systems and the ratio

of pumping energy to light loss in a laser, where these

parameters are easily derived from theory. Similar

parameters have been identified empirically in socioeco-

nomic systems, such as the ratio of local uprisings to police

interventions in the forefront of revolutions (Schröter et al.

2014), the size of the economy to the amount of private

debt in the onset of a financial crisis (Minsky 2008), or the

index of conflict-related news before the outbreak of war

(Chadefaux 2014). In cascading processes, the relation of

time scales for propagation and adaption are the crucial

parameters that announce instability such as that of

chemical reaction to diffusion rates in chemical pattern

formation. The elementary selection processes on the

microlevel are ultimately responsible for a hierarchy in

macroscopic time scales. For example, the universally

observable phenomenon of a slow approach to an insta-

bility regime is followed by a sudden phase transition with

systemic risks in widely differing domains. Typical

examples are the sudden tipping phenomena of ecosystems

or social upheavals after a long time of enduring stress.

2.1.4 Historicity

The dynamics of the system has a past and a future about

which some general statements can be made. The approach

to instability is frequently followed by a phase transition in

the form of a bifurcation, that is, a sudden change of system

behavior without external design. Even in the particularly

simple flow system of the Bénard convection, two different

structures, for example left and right turning convection

cells, become available at a phase transition from the

unstructured state close to equilibrium (Bénard 1900). The

system then chooses at random one possible stable branch

of the dynamics and thereafter proceeds in a deterministic

evolution until a new regime of instability is reached. Here

again a phase transition with the system making a choice

may take place. The overall dynamics is thus determined

by the fact that, depending on increasing temperature dif-

ference as impact over the boundaries in the Bénard con-

vection, the system chooses stable states by sudden

phenomena of self-organization, with deterministic and

smooth periods of development in between, and thereby

follows a particular path. The behavior of the system thus

exhibits an individual history, consisting of an interplay

between chance and determinism, and the final flow

structure may be quite complicated.

Analogous patterns are visible during structure genera-

tion in socioeconomic systems, be it traffic congestion,
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political revolution, technological innovation, or urban

settlements. For example, the adoption of one of a pair of

alternative technologies within a society or the market

success of a particular company can be greatly influenced

by minor contingencies about who chooses which tech-

nology or which company at an early stage. This pattern

clearly is reminiscent of the butterfly effect usually

observed in chaotic systems. This early choice can deter-

mine the further fate of the system and explains the

remarkable success of one technology or one company

over others when the winner takes all. Such a path

dependence excludes any purely local and momentary

origins of systemic risks, for instance of a stock market

crash (Sornette 2003) or the recent refugee crisis (Lucas

2016). It is indispensable to study the history of the system

if one aims at an adequate understanding of the dynamics

of the system. Rather advanced mathematical methods of

time series data analysis are available to discover early

warning signals.

Eventually, the system will be drawn to a particular

attractor as its ultimate dynamic domain. This end result

may be simply a fixed state, but it may also be of a more

complicated nature, such as periodic oscillation between

fixed states or even chaos, depending on the system’s

parameters and history. If more than one attractor is present

each one will be approached by the dynamics of the system

from its individual basin of attraction as the initial condi-

tion, such as a water divide establishes two basins of

attraction deciding to which side the rainwater will flow. It

is crucial to analyze attractors, since they are the basis for

suitable mitigation measures of systemic risks.

2.2 Quantitative Modeling

As shown above, there is strong empirical evidence of

homomorphism with respect to fundamental dynamic pat-

terns associated with systemic risks. Yet, more support and

instruments for practical exploitation on the basis of

complexity science can be provided by turning to quanti-

tative modeling.

This homomorphism is mirrored in the mathematical

theory of dynamic systems. It is shown there that a class of

rather different mathematical models tailored to rather

different systems essentially reproduces the same patterns

of dynamic behavior, notably universal types of attractors.

Contrary to many standard problems of physics and

chemistry, an individual mathematical model in complex-

ity theory is just the beginning of an understanding; its

evaluation over time, be it in the form of an iterated

function or a differential equation, produces unforeseen

dynamical structures. Well- defined rules, often surpris-

ingly simple, when applied in active repetition without any

intentionality over and over again, lead to an evolution in

time showing a remarkable creativity and richness of

structures. This result is not to be expected from the simple

underlying model specifying the rules. These structures in

terms of the associated attractors can be visualized in so-

called bifurcation diagrams that are specific in detail but

universal in the basic patterns associated with the dynam-

ical behavior of complex systems, up to amazing univer-

salities even in the range of chaos.

The time behavior of a complex system, as described by

such deterministic equations, is not entirely unpredictable.

As different as the models may be for one system or

another, the attractors can be predicted quite well.

Although in a case where there is more than one attractor,

the particular choice the system takes will be stochastic and

thus unpredictable. Even in the case of chaos, the attractor

of the system, referred to as a strange attractor and repre-

senting the general framework of long-term system

behavior, is predictable from a model, even though the

particular choice of the dynamics along this attractor over

time is sensibly dependent on the initial conditions and thus

clearly unpredictable over sufficiently long times. A pre-

diction of short run evolution is possible even in a chaotic

system, contrary to any long-time development, as is well

known from domains such as weather forecasting.

More frequently than not a mathematical model is not

available. But if data over time can be acquired, these can

be analyzed by appropriate mathematical methods to

extract patterns of dynamic behavior that, in favorable

cases, will allow some prediction to be made about the

future behavior of the system. This predictive ability

includes the occurrence of systemic risks. Examples are

known from challenges as different as stock market anal-

yses, weather forecasts, heart attacks warnings, and many

other cases.

More specific information about the rules governing the

emergence of dynamic structures and systemic risks can be

introduced in quantitative models through methods of

computer simulation. In such simulations the rules on the

microlevel can be tailored to the information available

about a system. In particular, the stochastic nature of such

data, often responsible for the empirically observed

unpredictability, notably in socioeconomic systems, may

be taken into consideration.

In physical chemistry, the emerging system state—the

relationship between the microlevel, the molecules, and the

macrolevel—is quantitatively accessible through a partic-

ular type of computer simulations within the framework of

statistical mechanics (Lucas 2007). In molecular dynamics

the dynamics of molecules is studied on the basis of

Newton’s equations of motion and appropriate interaction

models. The equilibrium attractors of dynamical properties

are found in the limit of long runs by time averaging. In a

pioneering paper, Alder and Wainwright (1957)
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demonstrated that a simulation of the dynamics of a rela-

tively small number of molecules, modeled crudely as hard

spheres, explained the emergence of solid order in a fluid

system of randomly distributed molecules under suit-

able external and internal conditions. Although no con-

densation phenomena could be found in a hard sphere

system, it was shown later that such a phase transition

appeared as soon as attractive forces were added to the

model of intermolecular interactions. When a realistic

model of the interactions, as accessible today from quan-

tum mechanics, was introduced, predictions in good

agreement with experiments could be achieved for the

equilibrium behavior of fluid systems (Luckas and Lucas

1989). These early results in physical chemistry indicate

the power of such simulation approaches. They draw

attention to the phenomenon common to complex systems

that basic properties of the system’s dynamics can be

studied by rather crude models of the interaction rules of

the agents.

In more general systems, notably those of socioeco-

nomics, analogous types of quantitative modeling have

been established. The phenomena associated with systemic

risks invariably emerge from agent actions that can be

studied and modeled on various levels of depth and

empirical trustworthiness, depending on the system under

study. As a consequence, there is, beyond qualitative pat-

tern recognition and understanding, a quantitative access to

their analysis by introducing these models into computer

simulations or mathematical equations within the frame-

work of complexity science. Various approaches in this

category have been developed. Most prominent are agent-

based computer simulation (Railsback and Grimm 2011)

and mathematical formulations in terms of master equa-

tions (Weidlich 2000). These are similar in spirit, although

differing in detail, to computer simulation of molecular

systems, and much has been learnt from these roots.

In multiagent simulation formalisms, based on the direct

pair and higher order interactions between agents and their

environment, it can be demonstrated (as found in the

physicochemical systems) that rather simple elementary

rules for the agents may result in the emergence of a rather

complex dynamic behavior of the system as a whole. But

the agents in such systems differ fundamentally from

molecules. They have many more internal properties, that

is modes of potential behavior, and the excitation of these

degrees of freedom depends on the situation of all the

subsystems. Care must be taken to account properly for the

modes of possible actions in a given system and to model

the actions properly, based on empirical analysis. In par-

ticular, the actions are not only direct and instantaneous as

in molecular systems but they also may be intermediate,

antisymmetric, and associated with subjective wishes and

memories. In physicochemical systems, wholeness patterns

simply emerge from the undirected and short-range inter-

actions of atoms and molecules; in socioeconomic systems,

however, patterns emerge by intentional activities of

human individuals in an environment that humans them-

selves create. By bottom-up effects the agents’ actions in

the form of cultural and economic activities generate a

collective field. This is a sociocultural field that acts back

top-down upon the agents in an ordering manner by

influencing their actions. Stochastic effects that reflect the

uncertainties of the actual agent behavior may, among

other strategies, be included by adding random noise to

their action rules.

Clearly, any tight analogy to physics and chemistry

systems is here restricted to the method of analysis and the

emergence of the typical phenomena associated with

dynamic systems discussed earlier. In detail, of course,

there is a richness of behavior in socioeconomic systems

far beyond what can be found in the relatively simple

systems in physics and chemistry. The analogies revealed

through insights form the physical world can, first, act as a

heuristic tool to look for similar phenomena in the social

world, and, second, to provide the basis for exploring

functional or even causal properties that may lead to further

implications that are eligible for statistical analysis of data

sets.

An illustration of agent-based computer simulation

studies that is still close to molecular dynamics in physical

chemistry is the analysis of crowd disasters during mass

events (Moussaid et al. 2011). The goal of such studies is to

clarify the cause of such disasters and then to look for

governance strategies to improve crowd safety. The

dynamics of crowd behavior is complex and often coun-

terintuitive. A systemic failure is usually not the result of

one single event on the microlevel of the individuals.

Instead, it is the interaction between many events that

cause a situation to get out of control. Computer simula-

tions are able to shed light on the crucial and generalizable

phenomena and behavioral patterns of human agents

responsible for the emergence of disasters in mass events.

Crowded situations, where instinctive physical interactions

dominate over intentional movements, give rise to global

breakdowns of coordination, and cause strongly fluctuating

and uncontrollable patterns of motion to occur (Helbing

et al. 2015). Whereas simple proportionalities exist

between crowd density and crowd flow in uncritical situ-

ations, this assumption fails at crowd densities passing a

critical threshold. In such cases, fatalities may result from a

phenomenon called crowd turbulence, notably close to

geometrically sensitive situations (Hoogendoorn and Daa-

men 2005). The occurrence of crowd turbulence can be

understood and reproduced in computer simulations by

means of force-based models in combination with New-

ton’s equations of motion to describe the microlevel
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dynamics. The most important lesson learned with respect

to governance is to stay away from the threshold of local

density. The problem is that local densities are hard to

measure without a proper monitoring system, which is not

available at many mass events. Existing technologies,

based on video, WiFi, GPS, and mobile tracking, do offer

useful monitoring systems that allow for real-time mea-

surements of density levels and predictions of future crowd

movements. By a combination of computer simulations,

real time monitoring systems, and complexity science,

important progress in the governance of systemic risks

during mass events has been achieved (Wirz et al. 2013;

Ferscha 2016).

In the master equation formalism, the microlevel

dynamics being defined by considerations, decisions, and

actions of individuals is modeled by probabilistic elemen-

tary steps in which the individuals perform specific actions,

thereby changing their properties and thus the macrocon-

figuration as a whole, referred to as the socio-configuration.

Particular transitions may or may not happen, guided by

decision and action generating motivations, which are

quantified by a priori undetermined parameters. While this

is analogous to the procedure in agent-based simulation,

different use is made of the elementary steps. Balancing in-

and outgoing probabilities leads to the master equation, a

differential equation for the probability function of the

social configuration. Long time attractors are found by

suitable mean value operations.

As an illustrative example of the master equation for-

malism, we consider dynamic structure generation in the

migration of interacting populations (Weidlich and Haag

1980). Modeling this dynamic sheds light on and supports

understanding of the emergence and evolution of parallel

societies as a major systemic risk in modern societies. The

agents in the migration phenomenon are the n individuals

of the system. This may be a country or a city with C dif-

ferent and distinguishable areas i, such as regions of a

country or quarters of a city. The analytical goal is to

scrutinize the conditions under which an original social

configuration, for example, a relatively homogeneous dis-

tribution of individuals over all areas in the system, may

become unstable and perform a transition to a nonhomo-

geneous distribution, such as the stable formation of

ghettos or the rhythmic oscillation of otherwise inhomo-

geneous distributions. Migration of interacting populations

and its effect on the population distribution in a system is

the result of economic, social, and in particular multicul-

tural interactions between the individuals. External impacts

may be political regulations, which set forth rules for the

living together of individuals in the society, or also the

informational flow into the system from other societies,

where migration phenomena have been demonstrated to be

either advantageous or harmful to those individuals who

have decided to migrate. Internal effects may be the advent

of strong cultural or ethnic feelings leading to agglomera-

tion or segregation movements. A critical combination of

external and internal random fluctuations in a selection

process may drive the system out of one societal configu-

ration into another one. An elementary action is the tran-

sition of one individual from region i to region j, which

changes the social configuration in a particular way. The

associated transition probability is formulated in terms of

the attractiveness of such a transition as felt by the con-

sidered individual. In the absence of any deterministic

theory for the dynamics on the elementary level, the tran-

sition probability has to be formulated empirically, but so

doing must make use of the insights that nonequilibrium

complexity provides. Solving the master equation shows

that starting from a homogeneous distribution and turning

on external and internal impacts in terms of the appropriate

nondimensional parameters, the system approaches a par-

ticular regime of instability from where a sudden phase

transition to a particular new distribution may occur on

exceeding a threshold. Out of this distribution further

thresholds that induce additional phase transitions to

changing distributions will appear. Over long periods, the

process of dynamic structure generation will yield to an

attractor, calculable from the master equation, which may

be a homogeneous distribution of the individuals over the

areas, a stable ghetto structure, or also an oscillation

between these states.

Many studies of computer simulations in the social

sciences are available in the literature. Some key references

with extensive further citations include Weidlich (2000),

Gilbert (2007), and Helbing (2015). These works are rooted

in the established methods of such studies in physics and

chemistry, and reveal analogous or even homomorphic

fundamental patterns of behavior by appropriate applica-

tions of statistical methods. But, in detail, they address a

much more comprehensive and complex richness of pat-

terns, which makes those patterns much more difficult to

interpret. Since fundamental interaction laws, contrary to

the systems of physics and chemistry, are not available

from independent theories, they must be parametrized. As a

consequence, the final outcome of such studies is, again

contrary to the systems of physics and chemistry, not a

prediction of the future behavior of the system but rather a

study of scenarios that describe what may happen under

particular conditions. These scenarios are not only thought

experiments of what one could imagine, but rather con-

stitute consistent and coherent simulations of further

developments of complex and dynamic systems. These

possible visions occur within a range of potential ‘‘futures’’

that depend on collective human actions as well as

unforeseen changes in context conditions.
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3 What Can Be Learned from Nonequilibrium
Complexity?

Due to the much more complicated interactions that take

place during systemic risk events, as compared to those in

physics and chemistry, any benefit obtained from a

knowledge transfer from these sciences to more general

systems has occasionally been questioned. Clearly, the

architecture of the systems relevant to systemic risk anal-

ysis, in particular socioeconomic systems, is much more

complex than in the molecular systems of physics and

chemistry. The elementary constituents, that is the human

individuals of a society, form a vertical, hierarchical

stratification in terms of families, groups, social organiza-

tions, firms, nations, and so on. These subpopulations

overlap and generate a multitude of horizontal and diagonal

interactions. An analogous vertical hierarchy is also present

in molecular systems in principle, such as elementary

particles that form nuclei, which combine with electrons to

produce atoms, these different atoms then forming mole-

cules, crystals, fluids, planets, and so on. Clearly the hor-

izontal interactions in socioeconomic systems are much

more complex. A further feature of human societies that

makes them unique is that the agents, human individuals,

can recognize emergent phenomena and therefore respond

to them. The individual human units from which societies

are formed vary greatly in their capabilities, desires, needs,

and knowledge, in contrast to typical systems of physics

and chemistry that are composed of similar or identical

units, for example, molecules. For these reasons among

others, while models of complexity developed for the

understanding of natural systems can illuminate and guide

the analysis of social systems, it is still impossible to apply

them directly to social phenomena.

Is there anything that can be learned for analyzing

systemic risks in such complex socioeconomic systems in

the framework of nonequilibrium complexity as developed

in the natural sciences? The physicochemical systems from

which this detailed knowledge about nonequilibrium

complexity has been generated by rigorous physical-

mathematical methods are special cases. A wealth of

empirical evidence, however, reveals strong analogies

between the dynamic structures in these relatively simple

systems and those much more complex systems in nature,

technology, and society that are relevant in systemic risk

analysis. These analogies are deeply rooted in the widely

universal laws for collective dynamics, in spite of the

rather differing rules between the agents, in systems that

otherwise do not show any similarity. The appearance of

these analogies has been traced back in physicochemical

systems to ordering processes on time scales in which the

elementary dynamics takes place. They are also reproduced

in the mathematical theory of dynamic systems. Taking

them into consideration significantly supports the under-

standing and analysis of systemic risks in any domain.

The detailed study of physicochemical systems made it

clear that, although the global situation and evolution of a

system is the result of very many microactions on the part

of the elementary constituents, these are not fully free in

their actions but are guided and coordinated by the global

field generated by them, of whatever nature this may be.

This cyclical relation creates and sustains such macro-

scopic dynamic phenomena as collective intelligence, ad

hoc network formation, adaptiveness, natural and assisted

self-organization, flexibility, resilience, and robustness

with respect to local requirements and temporary failures.

The overall behavior of the system is the result of a huge

number of somehow coordinated decisions made every

moment by many individual entities. Further, nonequilib-

rium complexity indicates the nature of phenomena that are

to be expected in dynamic evolution. An observer must be

alert to different macroscopic time scales: while the system

may evolve slowly and hardly noticeably under the con-

tinuous influence of some exogenous impact, there may at

one moment appear a sudden tipping, a harmful disaster, of

unpredictable consequences. This provides further moti-

vation to look for characteristic parameters that indicate

instability regions, which will announce themselves

empirically by irregularities, as discovered, for example, by

a time series analysis. Finally, historical insight into a

system should be valued, since the path the system takes

cannot be understood without an historical perspective. In

this way, nonequilibrium complexity provides a mental

framework for ordering the analysis and helps to system-

atize the empirical considerations of systemic risks in

socioeconomic systems. It appears that more can be done

on this basis qualitatively than just to identify spots of

instability and stay away from them, muddle through, and

keep one’s eyes wide open (Münchau 2017).

In addition to this qualitative structuring of empirical

evidence, more quantitative and useful insight may be

obtained. Although significant alterations have to be

applied to the computer simulation methods of molecular

physics, the basic insights to be gained are essentially the

same in both worlds. In the applications to physics and

chemistry, computer simulations in their early stages have

often been criticized, notably by experimentalists and

practitioners, as artificial and essentially useless because

they were unable to generate practically applicable results

for real systems. This was true in the sense that no reliable

information about the intermolecular interactions was

available. While this deficiency has improved, it is still true

that predictions from computer simulations do not nor-

mally reach the accuracy required for practical application

in real systems, although they have often been able to
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fathom fundamental effects in areas difficult or even dan-

gerous to probe experimentally. From the very beginning

of these methods, it was clear that their essential, unques-

tionable, and unbeatable contribution was to a different

field—the test and development of theories. By applying

the same model for intermolecular interactions in a statis-

tical theory and in simulations, it was possible to gain

insight into, verify, or falsify a theory that linked the level

of molecules with macroscopic behavior. The results of the

theory were tested against those of computer simulations,

which were then considered as essentially correct pseudo-

experimental data. Alternatively, when experimental data

of real systems were available, contrasting them with

results of computer simulations allowed the testing of

models for the interaction laws between the molecules and

thus helped fathom the microscopic world. By such means,

computer simulations in physics and chemistry made major

contributions to the development of adequate theories

(Hoheisel and Lucas 1984).

This experience has been transferred fruitfully to

socioeconomic studies. The value of computer simulations

in this domain is to generate a virtual laboratory in which

knowledge about fundamental social mechanisms can be

collected. It is thus possible to carry out experiments on

artificial social systems that would be quite impossible or

unethical to perform on human population. Assumptions

about the behavior of social systems may be tested for

plausibility and processes of emergence as well as his-

toricity may be studied. A model can be run on a computer

that allows researchers to study the behavior of a system

under controlled conditions. The results that are gained

may be, among other insights, a source of inspiration to

evaluate possibly successful or unsuccessful governance

strategies to deal with systemic risks.

Because systemic risks are phenomena of emergence out

of unstable situations, a crucial question related to gover-

nance is how the associated approach to instability can be

avoided or how the resulting dynamics can be nudged to

move in a desired direction. This requires an intervention

into system conditions. Quantitative simulations are able to

shed light on outcomes of such measures. The behavior of

complex systems is frequently determined by an interplay

of internal properties with external impacts, although cases

in which only one type of impact dominates are also

known. The external impacts may be supervised by creat-

ing new boundary conditions in the form of regulatory top-

down measures. But when the interactions between the

agents are strong and reinforcing, as practically is often the

case, the internal self-organization of the system will

dominate external effects. Then an intervention into the

interactions between the agents in the system locally and

specifically, that is by bottom-up and decentralized mea-

sures, may be more adequate, while an unqualified top-

down regulation may even be counter effective. In practical

cases a combination of both approaches will frequently

recommend itself. Then top-down governance may be one

of the many inputs to actors in such situations. Such gov-

ernance may intervene in the process of self-organization

from the bottom up. If data are available, these inputs may

be used to parametrize a model and thus generate an

instrument of prediction.

Last but by no means least, computer simulations

require the researcher to think through basic assumptions

very clearly in order to create a useful simulation model.

Every relationship to be modeled has to be specified

exactly. Every parameter has to be given a reasonable

value, for otherwise it will be impossible to run a mean-

ingful simulation. This mental discipline may be a signif-

icant contribution to designing well-understood models of

social dynamics far beyond the usual perspectives of purely

empirical approaches.

4 Conclusion

Until this day, we lack an adequate understanding of the

structure and dynamics of systemic risks. The lack of a

well-defined event space and sufficiently defined prefer-

ences impedes the application of conventional risk

assessment methods, based on the combination of proba-

bility distributions and utility functions. This raises sig-

nificant empirical, mathematical, and logical issues (Jaeger

2016), but as mentioned in the introduction, with this

article we did not want to address the important and thorny

issue of preference formation in the face of systemic risks.

The relevant preferences will need to transcend national

interests without negating them. How this can be achieved

is one of the great open questions of our times. What our

inquiry into causal mechanisms involved in systemic risks

does show, however, is that a framework where a single

idealized agent optimizes the expected value of actions

with uncertain outcomes will be insufficient to tackle sys-

temic risks.

The focus should rather be on multiagent models that

link the microlevel to the macrolevel and include emerging

properties, since each agent is linked to other agents by

multiple feedback loops. Experiences from the physical

and chemical sciences can be used as heuristic tools for

building such models and filling them with substantive

empirical data. The challenge will be to improve our

modeling capability to include intentional behavior in these

models, considering large degrees of freedom and vari-

ability. In addition, systemic risk evolves dynamically and

produces behavioral changes over time in a historic time

dependency. It is still unclear how much of these dynamics

is idiosyncratic and how much generalizable. The concepts

123

302 Lucas et al. Systemic Risks



that were laid out in this article may provide guidelines for

collecting empirical data and constructing complex multi-

agent models in an effort to develop a more profound

analysis and to test governance strategies by different

agents in different domains.

Responding adequately to global systemic risks is a

challenge for a world society where national interests,

different cultures, and lack of adequate concepts conflict

with the need to find common answers to global challenges.

Governance of systemic risks requires strategies that

address the complexity, scientific uncertainty, and

sociopolitical ambiguity of the relationships underlying

them. However, national as well as international attempts

to address systemic risks have not used much of what has

been accomplished in complexity science over the last two

decades (Bloesch et al. 2015). In the end, risk management

and communication need to address key properties of

systemic risks that we have outlined, and develop appro-

priate instruments and institutions to deal with global,

interconnected, stochastic, and nonlinear risks.

It would be naı̈ve to assume that such instruments and

institutions could simply be defined and then implemented

in the present historical situation, where globalization rai-

ses unprecedented challenges (Lederer and Müller 2005).

Rather our analysis of systemic risks leads to the following

hard question: how is the risk paradox (Renn 2014)—the

increasing difficulty of societies to reach a reasonable

assessment of the risks they face—connected to the glob-

alization paradox (Rodrik 2011)—the increasing difficulty

of humankind to shape economic globalization in a sus-

tainable way? Answering this question is likely to require

decades of inquiry, involving researchers and practitioners

of many disciplines and professions. By moving beyond

the study of conventional risks and investigating with a

creative mind the systemic risks of disasters in the envi-

ronmental, financial, and other domains, the risk research

community can play a vital role in this effort.
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