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Abstract. Gas flares are a regionally and globally significant source of atmospheric pollutants. They can be
detected by satellite remote sensing. We calculate the global flared gas volume and black carbon emissions in
2017 by applying (1) a previously developed hot spot detection and characterisation algorithm to all observations
of the Sea and Land Surface Temperature Radiometer (SLSTR) instrument on board the Copernicus satellite
Sentinel-3A and (2) newly developed filters for identifying gas flares and corrections for calculating both flared
gas volumes (billion cubic metres, BCM) and black carbon (BC) emissions (g). The filter to discriminate gas
flares from other hot spots uses the observed hot spot characteristics in terms of temperature and persistence. A
regression function is used to correct for the variability of detection opportunities. A total of 6232 flaring sites
are identified worldwide. The best estimates of the annual flared gas volume and the BC emissions are 129 BCM
with a confidence interval of [35, 419 BCM] and 73 Gg with a confidence interval of [20, 239 Gg], respectively.
Comparison of our activity (i.e. BCM) results with those of the Visible Infrared Imaging Radiometer Suite
(VIIRS) Nightfire data set and SWIR-based calculations show general agreement but distinct differences in
several details. The calculation of black carbon emissions using our gas flaring data set with a newly developed
dynamic assignment of emission factors lie in the range of recently published black carbon inventories, albeit
towards the lower end. The data presented here can therefore be used e.g. in atmospheric dispersion simulations.
The advantage of using our algorithm with Sentinel-3 data lies in the previously demonstrated ability to detect
and quantify small flares, the long-term data availability from the Copernicus programme, and the increased
detection opportunity of global gas flare monitoring when used in conjunction with the VIIRS instruments. The
flaring activity and related black carbon emissions are available as “GFlaringS3” on the Emissions of atmospheric
Compounds and Compilation of Ancillary Data (ECCAD) website (https://doi.org/10.25326/19, Caseiro and
Kaiser, 2019).
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1 Introduction

Industrial gas flaring (GF) occurs when flammable gas is dis-
posed of by burning, most commonly done at the tip of a
stack. This can either take place as a measure for pressure
relief or to dispose of unwanted gas. In the upstream oil and
gas industry (UOG, the oil and gas industry sector that in-
cludes searching, exploring, drilling, and operating the wells
of crude oil and natural gas from underground or underwater
sources and bringing the resource to the surface) in particu-
lar, GF occurs when the associated gas can not be sold easily
and is not used on-site for energy generation (Gervet, 2007;
Ismail and Umukoro, 2012; Emam, 2015).

Especially in insufficiently developed energy markets,
companies seem to be spared from enough economic or po-
litical incentives to collect or convert the gas (Rahimpour
and Jokar, 2012; Ojijiagwo et al., 2016). Improvements in
flare gas recovery systems have been recommended for more
closely monitored facilities (Zolfaghari et al., 2017; Papailias
and Mavroidis, 2018).

GF negatively impacts the immediate surroundings (Aki-
nola, 2018), for example, through noise (Ismail and
Umukoro, 2012; Nwoye et al., 2014), heat stress (Anomo-
hanran, 2012; Julius, 2011), and visual pollution (Anomo-
hanran, 2012; Ajao and Anurigwo, 2002). GF also impacts
the environment on a wider scale through the emission of
pollutants and greenhouse gases like carbon dioxide (CO2),
carbon monoxide, black carbon (BC), nitrogen oxides, poly-
cyclic aromatic hydrocarbons, volatile organic compounds,
and acid rain precursors (Obioh et al., 1994; Uzomah and
Sangodoyin, 2000; Nwaichi and Uzazobona, 2011; Onu
et al., 2014; Li et al., 2016).

It has been estimated that between 2003 and 2012 GF
produced on average 304 Tg CO2 yearly, representing 0.6 %
of the global anthropogenic emission of CO2 equivalent
(Olivier et al., 2014). Another source estimates the contri-
bution as 400 Tg (Emam, 2015). The recovery of flare gas
can play a relevant role in improving sustainability and meet-
ing emissions targets (Abdulrahman et al., 2015; Comodi
et al., 2016). Elvidge et al. (2018) estimated that a sup-
pression of GF could contribute up to 2 % of the CO2 eq.

global nationally determined contributions (NDCs) under the
United Nations Framework Convention on Climate Change
Paris Agreement. Some countries could meet or even surpass
their NDC (Yemen, Algeria, and Iraq), while others could
meet between one-third and almost all of their NDC (Gabon,
Venezuela, Iran, and Sudan).

The BC emissions from GF are of particular importance
because BC is a known carcinogen (Heinrich et al., 1994) and
a short-lived climate forcer (IPCC, 2013). BC strongly af-
fects environments such as the Arctic regions by lowering the
albedo of snow-covered surfaces (Flanner et al., 2007; Stohl
et al., 2013; Bond et al., 2013; Huang et al., 2015; Evange-
liou et al., 2018), which has an impact on the Earth’s radiative
balance (Doherty et al., 2010; Quinn et al., 2007; Hansen and

Nazarenko, 2004) and also adds to the Arctic amplification
phenomenon (Serreze and Barry, 2011). The GF contribution
to the BC global emissions was estimated to amount to 270
and 210 Gg in 2005 and 2010, respectively (Klimont et al.,
2017). Regionally, Stohl et al. (2013) and Cho et al. (2019)
showed that GF contributes half of the near-surface BC con-
centration in the Arctic and explains a significant fraction of
Arctic warming. Fossil fuel burning was also found to be the
main source of BC deposited on snow (Qi and Wang, 2019).

GF is considered an important component of atmospheric
dispersion simulations (Evangeliou et al., 2018) and climate
modelling (Huang and Fu, 2016), as the impact of GF emis-
sions extends beyond immediate environmental concerns.
However, information on the amount of natural gas being dis-
posed of through stack burning and the accrued emissions is
sparse. Reporting is often not enforced, inconsistent, or oth-
erwise not reliable.

Satellite remote sensing has been utilised for regional
and global identification and characterisation of GF (e.g.
Elvidge et al., 1997; Casadio et al., 2012b, a; Anejionu et al.,
2014; Faruolo et al., 2014; Chowdhury et al., 2014; Ane-
jionu et al., 2015; Faruolo et al., 2018). The advantages
and limitations of satellite remote sensing for the obser-
vation and monitoring of GF have recently been reviewed
by Anejionu (2019). The most frequently cited system is
NOAA’s VIIRS (National Ocean and Atmospheric Adminis-
tration’s Visible Infrared Imaging Radiometer Suite) Night-
fire (VNF) data set (see https://ngdc.noaa.gov/eog/viirs/
download_viirs_fire.html, last access: 2 February 2020), de-
veloped by Elvidge et al. (2013, 2016) and still under active
development (Elvidge et al., 2019). VNF, which succeeded
a system based on the OLS (Operational Linescan System)
instrument, which has been flying on board the DMSP (De-
fense Meteorological Satellite Program) satellites since the
1970s (Elvidge et al., 1997, 2001), provides a consistent
global survey of flaring sites and GF volumes from 2012
onwards (https://ngdc.noaa.gov/eog/viirs/download_global_
flare.html, last access: 2 February 2020).

Caseiro et al. (2018) describe an adaptation and exten-
sion of the VNF algorithm, with which observations of the
Sea and Land Surface Temperature Radiometer instrument
(SLSTR) on board the Copernicus Sentinel-3 satellites can
be analysed as well. The algorithm detects and quantifies
hot sources, including gas flares, using the night-time read-
ings of the shortwave infrared (SWIR), mid-infrared (MIR),
and thermal infrared (TIR) channels. SLSTR observations
(night-time overpasses at 22:00 LST, local solar time) com-
plement those of the VIIRS instruments (00:40 LST on JPSS-
1/NOAA-20 and 01:30 LST on Suomi-NPP; our analysis pre-
dates the launch of the latter, whose measurements are not
included in the present work) by filling observation gaps in
the time series. Both instruments are planned to allow long
term data availability.

Here, we present a new data set of global GF sites, vol-
umes (billion cubic metres, BCM), and BC emissions (g),
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which is based on the observation by Sentinel-3A in 2017.
Section 2 describes the newly developed methods for identi-
fying gas flares among the observed hot sources, correcting
for intermittent observations opportunities, and dynamically
determining appropriate BC emission factors from the obser-
vations. To the best of our knowledge, it is the first time that
the operational state of the flare, i.e. its temperature as deter-
mined from a satellite-based observation, is used to assign its
BC emission factor. The results are presented in Sect. 3, in-
cluding a comparison with other published methods (the VI-
IRS Nightfire product and the SWIR-radiance method), and
the conclusions are summarised in Sect. 5.

2 Methods

2.1 Hot spot detection and characterisation

The steps involved in the study presented here are outlined
in Fig. 1. We base our work on the persistent hot spot detec-
tion and characterisation algorithm described in Caseiro et al.
(2018) to process a full year (2017) of Sentinel-3A’s Sea and
Land Surface Temperature Radiometer (SLSTR) data. A hot
event at temperatures typical of a gas flare (1200–2500 K)
will produce a local maximum in the night-time readings
of the shortwave and possibly of the mid-infrared (SWIR
and MIR) channels of SLSTR. The SWIR band centred at
1.61 µm (S5) is closest to the expected spectral radiance max-
imum and serves as the primary detection band. Hot SWIR
and MIR pixels are searched for using a contextual approach
and their radiances are extracted. The radiometrically cali-
brated radiances of the different bands are used to fit the sum
of two Planck curves: one representing the hot source and
the other the cool background. Both curves are fitted to the
night-time spectral infrared (shortwave, mid-wave and ther-
mal infrared: SWIR, MIR, and TIR) observations to charac-
terise temperature (T ) and area (A) of the observed gas flares.
Detections are divided into spurious signals (if the tempera-
ture retrieval is outside the 500–5000 K range) and valid hot
spots. Hot spots are further divided into high accuracy (de-
tection in at least another band besides S5, i.e. S6 or S7 or
F1, meaning that with the LWIR there are at least 4 points
for the Planck curve fit and at least 3 cloud-free pixels in the
background to compute the background radiances) and low
accuracy. Subsequently, the radiative power (RP) of the flare
is calculated with the Stefan–Boltzmann equation.

While in principle the methodology used is based on
VNF developed for Visible Infrared Imaging Radiometer
Suite (VIIRS) (Elvidge et al., 2013, 2016), it differs by
(1) analysing the radiances of clusters of contiguous hot pix-
els instead of treating spatial maxima as individual pixels and
(2) using the TIR channels when fitting the sum of the two
Planck curves. By considering all the hot pixels and therefore
using all the information on the spatial scale, we expect our
representation to be more realistic for the characterisation of
large gas flare arrays. The use of the TIR channels implies a

more stringent constraining of the background temperature.
These options may lead to the retrieval of a lower flaring
temperatures than those retrieved using the VNF approach
(Caseiro et al., 2018). The lack of ground truth hinders the
evaluation of the accuracy of the different options.

Caseiro et al. (2018) already tested the method within a
limited time span using oil- and/or gas-producing regions and
compared the results to the VNF “flares only” product. The
results showed good agreement of the hot source detection
when investigating persistent hot spots with the advantage of
the Sentinel-3A’s SLSTR algorithm in detecting and quan-
tifying smaller flares, due to the night-time availability of a
second SWIR channel. The characterisation in terms of tem-
perature, area, and radiative power reached similar values.
However, temperatures were slightly lower, while areas and
radiative power were slightly larger in the SLSTR-based re-
sults. Note that VIIRS Nightfire also used two SWIR chan-
nels since January 2018 and that the detections are now con-
ducted by two VIIRS instruments (at 00:40 and 01:30 LST).

2.2 Hot spot classification

2.2.1 Volcano filter

As discussed in (Caseiro et al., 2018), the criteria adopted
to filter GFs are not enough to avoid false detections due to
volcanoes, suggesting the use of masks. In order to filter out
volcanic activity, we use the data available from the Global
Volcanic Program of the Smithsonian institution (Venzke,
2013). A mask at 0.025◦ resolution was calculated from all
eruptions in 2017. It also contains buffering zones stretching
to 0.25◦ distance from the volcanic centre coordinates be-
cause these coordinates may not correspond to the location of
the thermal radiation emission: many volcanoes do not con-
sist of a single edifice, and many individual eruptive fissures
through which lava erupts may be present in a volcanic field
(Siebert et al., 2010).

2.2.2 Discrimination of gas flares from other industrial
hot sources

In order to discriminate gas flares from other night-time hot
spots we investigate persistence and retrieval temperature fil-
tering.

We project all the hot spot detections onto a 0.025◦×
0.025◦ global grid. This is a spatial resolution that reflects
the reality on the ground, where several flares, separated by
tens to hundreds of metres, may be operated within a sin-
gle oil and gas facility, while facilities are tens of kilometres
apart. This resolution is also adequate for the pixel footprint
of medium-resolution imagers (Facchinelli et al., 2019). The
following quantities are then computed for each grid cell: the
number of hot spot detections (nObs); the number of high-
accuracy (Caseiro et al., 2018) hot spot detections (nObsHA);
the minimum, maximum, average, and standard deviation of
the high-accuracy hot spot retrieved temperature (T ), area
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Figure 1. Flowchart of the methodology used in the present work. The starting point is the hot spot algorithm detection described in Caseiro
et al. (2018) which, after applying a filter on the retrieved temperature (500 K < T < 5000 K), produces a database of valid hot spot detections.
For each of these valid hot spot detections, the activity (billion cubic metres, BCM) and black carbon (BC) emissions are computed. The
valid hot spot detections are further filtered: detection in at least another band besides S5 (S6 or S7 or F1, meaning that with the LWIR there
are at least 4 points for the Planck curve fit, PCF) and at least 3 cloud-free pixels in the background to compute the background radiances.
This step produces a database of high-accuracy hot spot detections. All hot spot detections are gridded into a global 0.025◦× 0.025◦ grid.
For each grid cell, the following quantities are computed: the number of valid detections (nObs), high-accuracy detections (nObsHA), days
of operation (nOps) (see below, Sect. 2.2.2), temperature, area, radiative power (minimum, average, maximum, and standard deviation), the
date of the first and the last detection, and the sum of the activity (BCM) and BC emissions. A volcano filter is applied to the global grid in
order to mask out volcanic activity (see Sect. 2.2.1). The last step is the discrimination of grid cells for flaring activity (see Sect. 2.2.2).

(A), and radiative power (RP); and the earliest and the latest
hot spot observation date.

The temperature value used in the selection process of
the discrimination strategy is based on Elvidge et al. (2016)
and on the recent work by Liu et al. (2018), who derived
gas flaring temperatures of 1000 to 2600 K from the VIIRS
Nightfire database, depending on the type of operation (shale
oil or gas and offshore, onshore, or refinery). According to
these authors, most of the gas flares display temperatures be-
tween 1650 and 1850 K. However, temperatures can occa-
sionally be as low as 1300 K. We therefore test for the min-
imum and/or for the maximum temperature for all the high-

accuracy detections within a grid cell (Tmin and Tmax, re-
spectively). The temperature range reported by Elvidge et al.
(2016) and Liu et al. (2018) (1650–1850 K) overlaps with
particularly hot detections from the coal chemical industry
and steel plants. Therefore, additional criteria are needed for
identifying gas flares in the hot source data set, which are
explored in the following paragraphs.

In order to select the discriminating strategy, we test sev-
eral subsets of the gridded high-accuracy hot spot database.
For each of the eight subsets described in Table 1, a sample
of 100 random onshore grid cells complying to the defined
thresholds have been tested by examining high-resolution
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Table 1. User’s accuracy (UA, %) and commission error (C, %) of the hot spot discrimination strategies considered. nObs is the number of
hot spot detections within a grid cell, nObsHA is the number of high-accuracy hot spot detections within a grid cell, Tmin is the minimum
temperature retrieved among all the hot spots detected within a grid cell, Tmax is the maximum temperature retrieved among all the hot
spots detected within a grid cell, and ncells is the number of grid cells that comply with the thresholds. We have tried eight combinations
(discrimination strategies) of thresholds on those variables. Each column represents a tested discrimination strategy.

Combination no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8

nObs > – 3 4 – – – – –
nObsHA > 2 2 2 5 5 5 7 7
Tmin (K) > 1000 1000 – – – – – –
Tmax (K) > 1400 1400 800 1200 1500 1800 1200 1500

ncells 6733 5872 9469 6817 6232 5485 5527 5129

UA 84± 6 86± 8 60± 10 77± 13 85± 11 88± 10 73± 14 87± 11
C 7± 3 4± 2 19± 11 6± 4 3± 1 1± 1 8± 5 2± 1

imagery (Google Earth), and the locations are classified into
four categories:

Flare (F ): flaring site with visible flame;

Likely (L): industrial or oil extraction site with typical flar-
ing infrastructure but no visible flame;

Unlikely (U ): industrial site without typical flaring infras-
tructure;

No industry (N ): e.g. agricultural or forested area.

The subsets are characterised in terms of user’s accuracy
(UA, Eq. 1) and commission error (C, Eq. 2), where F , L, N ,
and U denote the number of grid cells in the corresponding
category:

User’s accuracy=
(

F +
L

2

)
±

L

2
, (1)

Commission error=
(

N +
U

2

)
±

U

2
. (2)

The user’s accuracy is the accuracy from the point of view
of the user. This metric represents the frequency with which a
class on the map corresponds to the ground truth. In our case,
UA lies between at least the verified flaring locations and at
most the sum of the verified and the likely flaring locations.
The commission error is calculated by reviewing the classi-
fied sites for incorrect classifications. In the present work, the
commission error lies between at least the locations without
any industry or infrastructure and at most the sum of the loca-
tions without any industry or infrastructure and the unlikely
flaring locations.

In some industrial areas, facilities that use gas flares may
be close to other hot spots, such as iron smelters or steel
mills. In those cases, a commission error occurs when the
flare is off and our methodology samples the other hot spot.
The omission error can be divided into two categories: flares
that the hot spot detection and characterisation algorithm

failed to detect and flares that were detected as hot spots but
which the discrimination strategy left out. The former will be
the same for any discrimination procedure considered.

In order to discriminate gas flares from other hot spots,
we discriminate hot spots based on their persistency (nObs,
number of hot spot detections, and nObsHA, number of high-
accuracy hot spot detections) and on their temperature time
series (Tmin and Tmax, the minimum and the maximum tem-
perature retrieved among all the hot spots detected within
a grid cell). We have tried eight combinations (discrimina-
tion strategies) of thresholds on those variables (Table 1). For
each of the eight combinations, we examine high-resolution
imagery for 100 random onshore locations (800 in total) in
order to verify the presence of a gas flare. The goal is to max-
imise user’s accuracy (UA) and minimise commission error
(C) while minimising the omission error (here, the variation
in ncells is used as a proxy). Discrimination strategy no. 5
(Table 1) was selected as the most suitable: detections lo-
cated in grid cells where the yearly maximum temperature
retrieval is above 1500 K and a persistency and quality crite-
rion (nObsHA > 5) is met are considered as originating from
gas flares and are called flaring locations hereafter. This re-
sults in a relatively large number of grid cells with detections,
i.e. low omission error, combined with a high user’s accuracy
and a low commission error of 85±11 % and 3±1 %, accord-
ing to Eqs. (1) and (2), respectively. Inserting a limitation on
the minimum temperature or increasing the maximum tem-
perature or the number of high-accuracy observations would
not significantly increase the user’s accuracy or decrease the
commission error, but would reduce the number of grid cells
complying with the discrimination criteria by several hun-
dreds, which we interpret as an increase in the omission er-
ror. Although our discrimination strategy is satisfactory at
the planetary level, global aggregating approaches may miss
individual occurrences, in our case especially where the oil
exploitation frontier is under expansion (Facchinelli et al.,
2019).
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Figure 2. Maximum number of observations per grid cell as a func-
tion of latitude. The latitude values are binned (10◦). The function
expresses the maximum number of observations nObsmax , which we
assume as a continuous operation of the hot source, as a function of
latitude.

2.3 Determination of flared volumes and black carbon
emissions

In order to compute the activity and emissions, we estimated
the number of days of operation per site by expressing the
maximum number of observations as a function of latitude
(in 10◦ bins; see Fig. 2). The function computes the maxi-
mum number of observations nObsmax per grid cell for a given
latitude, which we assume expresses a continuous hot spot
(365 d yr−1). The number of days of operation nOps is then
estimated by scaling following Eq. (3). By this scaling, we
approximately correct for the limitations of gas flaring de-
tection from space (cloud cover and overpass frequency).

nOps = nObs×
365

nObsmax

(3)

For the estimation of the flared volume, we applied the
calibration derived by Elvidge et al. (2016) to each single de-
tection within a flaring location grid cell. The calibration re-
lationship uses a modified formulation of the radiative power
to output the yearly flared volumes (in billion cubic metres,
BCM), which is then scaled to a daily activity in m3.

The lower bound BCMmin for the activity estimate as-
sumes that the flare is only active on the nObs days with hot
spot detections. The upper bound for the activity estimate as-
sumes that the flare is constantly active:

BCMmax = BCMmin×
365
nObs

. (4)

The best activity estimate corresponds to assuming that the
flare is active for nOps days:

BCMbest = BCMmin×
nOps

nObs
. (5)

The emissions of black carbon (BC) from gas flares are
estimated using reported emission factors (EFs), using the
traditional approach that the emission equals the multipli-
cation of the activity (i.e. BCM) by the EF. Klimont et al.
(2017) recognised the limited number of measurements of
flaring emissions. Here, we maximise the use of the limited
information available on the EFs by combining it with the
individual observed flare characteristics.

EF data are scarce and the few published results span
a considerable range of values; see McEwen and Johnson
(2012), Stohl et al. (2013), Schwarz et al. (2015), Huang and
Fu (2016), Weyant et al. (2016), and Klimont et al. (2017).
In the present work, we apply the same concept of a vary-
ing EF as the one used by Klimont et al. (2017), who used
the country of origin as an indication of the flare operation.
However, instead of the physical location of the flare, we
use the retrieved flaring temperature as an indication of the
combustion completeness. Flaring temperatures close to the
adiabatic flame temperature for natural gas (around 2500 K)
are associated with more complete combustion and there-
fore lower BC emissions (0.5 g m−3). On the other hand,
low flaring temperatures (700 K and below) are associated
with higher BC emissions (1.75 g m−3). Between the two ex-
tremes, provided by the work of Klimont et al. (2017), the BC
emission is scaled linearly as a function of the flaring tem-
perature (see Fig. 3). To the best of our knowledge, this is the
first time that operating conditions are taken into considera-
tion when assigning the EF, and that the operating conditions
are derived from direct observation.

The country-level BCM and BC estimates are computed
by summing the individual flares estimates within the borders
of each country and its exclusive economic zone.

With this methodology we estimate a wide range of pos-
sible activity (BCM) and BC emissions (g), where our best
estimate falls between the “flaring only when there is a detec-
tion” (BCMmin and BCmin) and “constant flaring” (BCMmax
and BCmax). We consider the range between BCMmin and
BCMmax to be the confidence interval for the possible activ-
ity of a flaring site. Similarly, [BCmin,BCmax] is the confi-
dence interval for the possible emission.

3 Results

3.1 Flaring locations

All the hot spots detected globally for 2017 using the algo-
rithm as described in Fig. 1 are shown in Fig. 4. Their classi-
fication is shown in Fig. 5

Noise, such as detections in the open ocean and the South
Atlantic anomaly, is filtered out when considering only the
high-accuracy hot spots as defined by Caseiro et al. (2018).
There are 427 202 high-accuracy hot spots in the data set.
Their distribution pattern suggests that they encompass a
large range of hot sources, such as wildfires, volcanoes and
industrial sources.

Earth Syst. Sci. Data, 12, 2137–2155, 2020 https://doi.org/10.5194/essd-12-2137-2020
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Figure 3. (a) BC emission factor function used in the present study.
The emission factor is bounded by the extremes of the range used
in the GAINS model (0.5–1.75 g m−3) (Klimont et al., 2017) and
scaled as a function of the flaring temperature, used as an indica-
tion of combustion completeness. (b) For comparison purposes, the
EFs derived by Stohl et al. (2013), Schwarz et al. (2015), Huang
and Fu (2016), Weyant et al. (2016) (using the Single Particle Soot
Photometer, SP2, or the Particle Soot Absorption Photometer, AM),
and Klimont et al. (2017).

After gridding, filtering out active volcanoes (71 volcanic
eruptions in 2017), and retaining the grid cells passing the
GF criteria, the number of globally detected flaring sites in
2017 is 6232.

Russia (985) and the United States (917) are the countries
with the highest number of flaring locations; see Fig. 6. The
third country is Iran (441), with less than half of the top two
countries. The other countries with more than 300 flaring lo-
cations are China (365) and Algeria (324). These five coun-
tries account for about one-half of the global flaring loca-
tions.

3.2 Flaring characteristics

Statistics on retrieved temperature are reported in Figs. 7 and
8.

The average temperature at the flaring locations approx-
imately ranges from 950 to 2250 K. This is slightly smaller
than the range 750–2500 K reported by Liu et al. (2018), who
used VIIRS Nightfire data. This conforms to the findings of
Caseiro et al. (2018). The distribution of average retrieved
temperatures confirms the bi-modal distribution with modes
around 1750 and 1200 K that has also been observed by VI-
IRS (Elvidge et al., 2013).

Statistics on retrieved radiative power are reported in
Figs. 9 to 10.

The average radiative power at flaring locations range
from a few tenths of a MW up to approximately 1 GW
(Fig. 9), spanning the 5 orders of magnitude reported by

Elvidge et al. (2013). Fisher and Wooster (2019) report a
global FRP spanning from a few tens up to approximately
100 MW, with a median between 1 and 2 MW. Our results
are very similar.

There were 197 610 detections at flaring locations in the
SLSTR data set, most were clusters of up to 20 S5 pixels, as
shown in Fig. 11.

3.3 Flared volumes

The activity for all the individual flaring locations is shown
in Fig. 12. The most active flare burned 0.623 BCM in 2017
and is located south of Punta de Mata in Venezuela. This is
also where Elvidge et al. (2016) found the most active flare
for 2012, though more active (1.13 BCM).

Our best estimate for the global flared volume for 2017 is
129 BCM with a confidence interval of [35,419] BCM.

Approximately half of the global flared volume originates
from four countries only: Iraq (19 BCM), Iran (18 BCM),
Russia (18 BCM), and Algeria (11 BCM) (Fig. 13).

3.4 BC emissions

The black carbon (BC) emissions for all the individual flaring
locations are shown in Fig. 14. The most active flare emitted
0.35 Gg BC in 2017 (south of Punta de Mata).

Our best estimate for the global BC emissions from
gas flaring is 73 Gg (lower estimate: 20 Gg; upper esti-
mate: 239 Gg). As for the flared volume, four countries
(see Fig. 15) account for more than half of that value: Iraq
(11 Gg), Iran (11 Gg), Russia (10 Gg), and Algeria (6.0 Gg).

The global value determined here (73 Gg) is about one-
third of the estimate from the Greenhouse Gas – Air Pollu-
tion Interactions and Synergies (GAINS) model (ECLIPSE
V5a global emission fields) (Klimont et al., 2017): 270 and
210 Gg in 2005 and 2010, respectively. Such a decrease be-
tween 2010 and 2017 may be unlikely, given that the produc-
tion within the UOG did not decrease in such a significant
way. Rather than a decrease in the activity, or a shift in the
emission factors (EF), the discrepancy might be due to how
the EF is determined (see Sect. 2.3). Indeed, Klimont et al.
(2017) used satellite-based retrievals for the flaring locations
and their characteristics (VNF). Since the VNF methodol-
ogy for the detection and characterisation of flares has sev-
eral similarities with the one presented here, the differences
in the computed emissions are more likely to come from a
difference in the EF used. Therefore, we consider that part of
the equation to be the most relevant in interpreting the differ-
ence between our results and the results from Klimont et al.
(2017). Assigning the EF at the operational level for each de-
tection seems more realistic than assigning it at the country
level.

Our global estimate is larger than the global extrapolation
made from a flaring emission study in the Bakken field by
Weyant et al. (2016): 20± 6 Gg. The dynamic assignment
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Figure 4. Location of all the 807 327 hot spots (all detection databases filtered for spurious signals; see Fig. 1), of all the 427 202 high-
accuracy hot spots (hot spots filtered for cloudiness and accuracy of the Planck curve fitting; see Fig. 1) and of all the 6232 flaring locations
(grid cells with at least 5 high-accuracy hot spots and a maximum retrieved temperature above 1500 K) detected in 2017.

Figure 5. Classification of the 872 581 detections: 65 254 are spurious signals and 807 327 are hotspots. Of the 807 327 hotspots, 427 202
are high accuracy (filtered for cloudiness and accuracy of the Planck curve fitting, see Fig. 1) and 380 125 are low accuracy. After gridding
(0.025◦× 0.025◦ global grid), 6232 grid cells are classified as flaring locations (grid cells with at least 5 high-accuracy hot spots and a
maximum retrieved temperature above 1500 K). Flaring locations comprise 197 610 hotspots, of which 151 836 are high accuracy and 45 774
are low accuracy.

of the EF, based on the single temperature retrieval, should
be closer to reality than globally extrapolating the EF mea-
sured at a single field. Huang and Fu (2016) used the VIIRS
Nightfire data set for the flaring activity and emission factors
derived from the flared gas chemical composition to compute

the BC emissions. Their estimates range from approximately
140 to 200 Gg yr−1 between 1994 and 2012. VIIRS Night-
fire was also the basis for the determination of atmospheric
emissions from gas flaring by Doumbia et al. (2019) for the
African continent. The authors computed a BC emission in
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Figure 6. Number of flaring locations by country (top 20).

2005 between 6.2 and 141 Gg. For this continent, our results
yield 16 Gg.

3.5 Comparison with VIIRS Nightfire

Visible Infrared Imaging Radiometer Suite (VIIRS) Night-
fire (VNF) 2017 flaring results are being made avail-
able by the National Geophysical Data Centre of the
National Oceanic and Atmospheric Administration of
the United States at https://www.ngdc.noaa.gov/eog/viirs/
download_global_flare.html (last access: 2 February 2020).
In this section, we perform an in-depth comparison of our
results with those from VNF in terms of flaring locations,
temperature and activity.

Figure 16 shows all Nightfire flaring detections in 2017
projected onto the same 0.025◦× 0.025◦ global grid as used
for our results. The original VNF database lists a total of
10 825 observations. After the projection, these produced
10 185 flaring locations. This is an indication that the grid-
ding spatial resolution used is adequate.

A comparison between Figs. 4 and 16 reveals a gen-
eral global agreement between the methods in terms of de-
tections, with the exception of the regions of tar sands in
Canada and shale gas in the US. Gas flaring regions are
more populated by the VIIRS-based methodology than by
the present work. Indeed, we find 6232 flaring sites against
10 185 from the gridded VIIRS Nightfire data. The discrep-
ancy might arise from different gas flare identification crite-
ria: for SLSTR, a flaring site is a grid cell that has a minimum
retrieved flaring temperature > 1500 K and at least five high-
accuracy detections throughout the year. In the VNF data set,
a flaring site is assigned to any grid cell for which the data
set has at least one record.

Among the 10 185 VNF flaring locations and the 6232
flaring locations reported in the present work, 2964 are co-
incident. Figure 17 compares the average retrieved flaring

temperature and the total BCM flared at these coincident
flaring locations. Both methodologies retrieve temperatures
roughly in the same range, with the points centred around
a unique region and an observable trend in the comparison.
Due to these characteristics and taking into consideration that
a satellite-based observation is nothing but the snapshot of a
moment in time, in this particular case the snapshot of an
inconstant phenomenon, we find the correlation reasonably
good. The SLSTR-based method retrieved temperatures that
are more spread out over the values’ range than in the VNF
product though. The BCM retrievals are well correlated with
R2
= 0.74. This shows that the differences, and presumably

errors, in the temperature and flare area retrievals partly com-
pensate for each other. The regression line shows that the
BCM in the VNF data set is on average 16 % larger than the
one retrieved by the SLSTR-based method.

A total of 7221 (70 %) VNF flaring locations and 3268
(52 %) SLSTR-based flaring locations are not coincident.
The minimum distance from a VNF flaring location and the
closest SLSTR-based flaring location, and vice-versa, are
shown in Fig. 18.

We interpret the large difference in the number of detec-
tions as the effect of several factors: (1) small geolocation
errors, (2) clustering versus local maxima detections, and
(3) difference in the observation opportunities. In Table 2 we
attempt to quantify the importance of these factors.

Distances of up to one grid cell (adjacent cells) may arise
from small geolocation inaccuracies. This accounts for 2562
SLSTR-based locations and for 1507 VNF locations.

The Nightfire algorithm considers pixels that are local
maxima and our methodology aggregates contiguous hot pix-
els within a unique cluster. These clusters may be very large,
contain more than one local maximum and spread over grid
cells, but only one cell is finally considered as its location.
This was already indicated in Caseiro et al. (2018), where
data retrieved from a natural gas and condensate production
site in the Yamal peninsula (northern Siberia) were com-
pared between VIIRS, SLSTR, and HSRS (Hot Spot Recog-
nition System). In that particular case, the methodologies re-
lying on clustering of hot pixels (SLSTR and HSRS) reported
fewer gas flaring sites than VIIRS Nightfire. In the current
database, about half of the 197 610 hot spots at flaring loca-
tions were clusters of up to 20 S5 pixels. At nadir, a S5 pixel
has a ground footprint of 500×500 m2. Therefore, 20 S5 pix-
els span a distance of up to 10 km, which corresponds to, at
most, about four grid cells. Distances between VNF flaring
locations that are not adjacent and less than four grid cells
away from the closest SLSTR-based location may therefore
arise from the clustering methodology. This is the case for 73
SLSTR-based locations and 1651 VNF locations.

The remaining 633 SLSTR-based locations and 4063 VNF
locations were further apart. Of the distant locations in VNF
not considered as flaring by our methodology (4063 grid
cells), slightly more than half (2222) had at least one SLSTR
detection, of which almost all (1964) had at least one detec-
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Figure 7. Distribution of the average retrieved temperatures (K) for the flaring locations.

Figure 8. Average flaring temperature (K) at the 6232 flaring locations.

tion with the maximum retrieved temperature above 1500 K;
see Fig. 19. On the other hand, only 159 grid cells (out of
the 2222 distant VNF locations that had at least one SLSTR-
based detection) had at least five high-accuracy SLSTR-
based detections, see Fig. 20.

We thus conclude that, at VNF distant locations, a lack
of enough detections and not the temperature hinders our
methodology to classify those grid cells as flaring locations.

Since the overpasses are not that far apart in time, cloudi-
ness cannot account for this. The remaining factors affect-
ing the detection opportunity are the overpass time and the
swath. The difference in the overpass time between the sen-
sors may play some role: the Suomi-NPP platform observes
later during the night, thus possibly having more opportuni-
ties to detect gas flares at night. However, the effect of the
different swaths of the instruments is likely more important.
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Table 2. Comparison between the number (n) of flaring locations by VNF and the SLSTR-based method: total number, coincident, adjacent
(< 2 grid cells away), clustering adjacent (≥ 2 and ≤ 4 grid cells away), and distant (≤ 4 grid cells away) locations. The sum of the activity
(in BCM) for each is also shown.

Total Clustering
flaring Coincident Adjacent adjacent Distant

locations locations locations locations locations

Distance d Grid cells d = 0 0 < d <2 2≤ d ≤ 4 d > 4

SLSTR-based n 6232 2964 2562 73 633
BCM 129 78 39 0.9 10

VNF n 10185 2964 1507 1651 4063
BCM 151 132 7.3 3.1 8.7

Figure 9. Distribution of the average radiative power (MW) for the
6232 global flaring locations.

VIIRS has a much larger swath (3040 km against 1420 km
for SLSTR) and has therefore more opportunities for detec-
tion. The detection opportunity is more important if the flare
exhibits little activity and, indeed, the 4063 VNF distant flar-
ing locations account for just 8.7 BCM in the VNF inven-
tory. The methodology presented here could be adjusted and
the threshold in the number of high-accuracy observations
lowered, but this would come at the cost of increasing false
positives (see Sect. 2).

The very large majority of the VNF-based activity was de-
tected at locations coincident with SLSTR-based locations
(87 % at coincident locations and 92 % at coincident or ad-
jacent locations). A total of 98 % of the SLSTR-based ac-
tivity was detected at coincident or adjacent locations. This
shows that both methodologies detect similar global levels of
activity (151 BCM computed by VNF and 129 BCM for the
present work) and this at the same locations, despite the large
discrepancy in the number of flaring locations.

Table 2 shows that the difference in the computed global
activity comes mostly from coincident and adjacent flaring

locations, which indicates that the computation of the activity
levels is more likely the source of the discrepancy (22 BCM
globally) rather than the detection itself. One possibility is
the scaling we use to obtain the annual activity from the
individual detections (see Sect. 2, Eq. 3, and Fig. 2). An-
other source of discrepancy could be the lower temperature
retrieved by our method, which considers the TIR for the
Planck curve fitting.

Figure 21 shows the global distributions of the average re-
trieved flaring temperatures. The generally lower tempera-
ture in the present work can be traced back to the clustering
methodology we take and was discussed in our previous pa-
per (Caseiro et al., 2018). The use of the TIR channels in
the dual Planck curve fitting may also lower the retrieved hot
source temperature.

3.6 Comparison with the SWIR-radiance method

Fisher and Wooster (2018) developed a methodology to de-
rive the radiative power from flares using a single SWIR
channel, analogous to a previous methodology which used
the MWIR radiance to derive the fire radiative power in the
case of landscape fires (Wooster et al., 2005). The method-
ology is based on the near-constant ratio between the SWIR
spectral radiance and the total emitted radiance at typical flar-
ing temperatures (i.e. 1600–2200 K). The radiative power can
be computed, using a sensor-specific optimised relationship
and without the input of the emitter’s temperature, with a the-
oretical precision of 13.6 %.

Fisher and Wooster (2019) used the SWIR-radiance
methodology to derive a global time series of flaring activ-
ity using (A)ATSR and SLSTR data. For SLSTR, the data
used spanned from May 2017 to May 2018. The identifica-
tion of night-time thermal hotspots was conducted using a
simple static threshold: pixels having a radiance above the
instrumental noise level were considered as hot spots. The
thermal hotspots are subsequently gridded onto a 1 arcmin
global geographic grid (approximately 2 km). For SLSTR, a
grid cell is considered a flaring location if there were at least
2 different months with hotspot observations. The authors re-
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Figure 10. Average radiative power (MW) at the 6232 flaring locations.

Figure 11. Distribution of the number of S5 pixels per cluster for
the 197 610 valid detections at the 6232 flaring locations. Note the
log scale on the y axis.

port 10 428 locations, with a global distribution very similar
to what we report here.

In order to compare the methodologies, we apply the
Single-SWIR method (Fisher and Wooster, 2019) to our de-
tections and compare the output (RP) to our results (197 610

Figure 12. Flaring activity (best estimate, BCM yr−1) for each in-
dividual flaring location (6232 in total).

valid detections at flaring locations). Since the BCM in both
methodologies is derived from linear models, the differences
seen in the RP comparison would be reproduced in a BCM
comparison. We limit the comparison to detections for which
the retrieved temperature falls in the range 1600–2200 and
which were limited to one S5 pixel in order to comply
with the pre-requisites of the SWIR-radiance approach. The
SWIR-radiance approach also allows us to compute the ac-
tivity. However, since the BCM in both methodologies is de-
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Figure 13. Flaring activity (best estimate, BCM yr−1) by country
(top 20).

Figure 14. Flaring BC emissions (best estimate, Gg yr−1) for each
individual flaring location (6232 in total).

rived from linear models, the differences seen in the RP com-
parison would be reproduced in a BCM comparison.

Figure 22 shows the comparison between the RP derived
from the SWIR-radiance method and the Planck curve fit-
ting followed by the application of the Stefan–Boltzmann
equation. There is a good correlation, although the SWIR-
radiance methodology outputs radiative power values about
25 % lower than those from this work. The trend is more
recognisable at lower temperatures, which might indicate
that the relationship between the SWIR spectral radiance and
the total emitted radiance deviates more from linearity at
lower temperatures.

Figure 15. Flaring BC emissions (best estimate, Gg yr−1) by coun-
try (top 20).

4 Data availability

The flaring activity and the related black carbon emis-
sion product are available with 0.025◦× 0.025◦ res-
olution on the Emissions of atmospheric Compounds
and Compilation of Ancillary Data (ECCAD, https://
eccad3.sedoo.fr/#GFlaringS3, last access: 1 June 2020;
https://doi.org/10.25326/19, Caseiro and Kaiser, 2019) web
site (https://eccad3.sedoo.fr, last access: 1 June 2020) for use
in, e.g. atmospheric composition modelling studies.

5 Conclusions

In this work we apply a previously described hot spot detec-
tion and characterisation procedure (Caseiro et al., 2018) to
the 2017 observations of Copernicus Sentinel-3A’s Sea and
Land Surface Temperature Radiometer (SLSTR) instrument.

In our previous paper, only persistency was used to dis-
criminate gas flares from other sources of heat emissions.
Here, we refine the discrimination by updating the persis-
tency criterion and introducing a temperature criterion, two
characteristics of gas flares. The development of the refined
discrimination strategy is reported. Validation through refer-
encing with high-resolution images yields a detection accu-
racy of 85± 11 %, with a commission error of 3± 1 %.

Our methodology detects 6232 flaring sites worldwide in
2017. Over half of these are located in five countries only:
Russia, the United States, Iran, China, and Algeria.

Additionally, we calculate the volume of flared gas based
on a previously observed and published linear relationship
between the flared volume and observed flare radiative en-
ergy. Subsequently, estimates of the associated black carbon
(BC) emissions are calculated with a new dynamic emission
factor parameterisation.
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Figure 16. VIIRS Nightfire flaring locations for 2017. We considered every record in the VIIRS Nightfire data as a flare, i.e. “upstream”
(10 009), “downstream oil” (718), and “downstream gas” (101). After gridding, 10 185 cells were populated and are considered flaring sites.
A detailed spatial analysis between these locations and those found by our methodology is shown in Fig. 18.

Figure 17. Comparison of the average temperature and the total BCM retrieved by VIIRS Nightfire and the SLSTR-based method at the
2964 coincident flaring locations. The red line represents the 1 : 1 relationship. The dashed line represents the linear regression between both
methodologies.

The best estimate of flared gas at the detected flaring sites
is calculated by applying a latitude-dependent scaling factor
that roughly describes the variation in observation opportu-
nities due to cloud cover and overpass frequency. The confi-
dence interval is specified with the following bounds: the up-
per bound is computed as if the flare would constantly burn
for the whole year. The lower bound is computed as if the
flare would burn on days with hot spot detections only. The
spread of the confidence intervals and the accuracy of the
best estimates could certainly be reduced in the future with a
more sophisticated correction for different observations op-
portunities that accounts for the actual number of cloud-free

and solar-uncontaminated overpasses of each individual flar-
ing site.

Our analysis yields a result of 129 billion cubic metres
(BCM) of gas flared in 2017 (best estimate) with a confi-
dence interval of [35,419] BCM. Only four countries are re-
sponsible for half of the global gas flaring activity: Iraq, Iran,
Russia, and Algeria. The most active flaring location is lo-
cated in Venezuela and burned 0.62 BCM in 2017.

A comparison with the VIIRS Nightfire data set shows that
the number of flaring sites assessed here is significantly lower
(6232 vs. 10185). Three main reasons can lead to the discrep-
ancy: (1) small geolocation errors may result in flares being
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Figure 18. Minimum distance from a SLSTR flaring locations at
the closest VNF flaring location (a). Minimum distance from a VNF
flaring locations at the closest SLSTR flaring location (b). The dis-
tances are measured in grid cells (0.025◦× 0.025◦ global grid). Of
the 6232 VNF flaring sites, 2964 are coincident with SLSTR flaring
sites and 2562 are directly adjacent. Of the 10 185 VNF flaring sites,
2964 are coincident with SLSTR flaring sites and 1507 are directly
adjacent.

assigned to adjacent grid cells. (2) The clustering method-
ology employed for SLSTR may result in an assignment of
gas flare arrays spanning several grid cells to only one cen-
tral grid cell. (3) The relatively stringent persistency criterion
of the SLSTR method certainly excludes some infrequently
operation gas flares. The former two reasons result in a mis-
match between the SLSTR-based and VNF locations of gas
flares but the aggregated budgets by country are not affected.
The stringency of the persistency criterion might affect 4063
of the 10 185 VNF locations and these have a relatively little
contribution of 8.7 BCM to the annual total of 151 BCM in
VNF. The incorporation of Sentinel 3B in our system would
lead to more observation opportunities. The inclusion of this
feature and an analysis for the following years is pending
and we expect it to provide substantially more coincidences
between the two data sets. The complementarity and consis-
tency of both products indicate that a merged VIIRS/SLSTR
product would provide substantial improvement of the global
flaring activity and emissions.

We also compare our activity estimates to the SWIR-
radiance method. Both methodologies show a good agree-
ment for high-temperature detections, but a constant under-

Figure 19. Average and maximum SLSTR-based temperature dis-
tributions at VNF non-adjacent (the VNF flaring location is≥ 2 grid
cells away from the closest SLSTR-based flaring location) and dis-
tant (> 4 grid cells away) locations. The similar temperature distri-
bution between the different types of flaring sites supports the argu-
ment that the discrepancy in the number of flaring sites is not due to
the temperature criterion but to the observation criterion, which can
be traced back to less observation opportunities.

Figure 20. Number of SLSTR-based observations and high-
accuracy observations distributions at VNF non-adjacent (the VNF
flaring location is ≥ 2 grid cells away from the closest SLSTR-
based flaring location) and distant (> 4 grid cells away) locations.
The diminutive number of observations at distant locations supports
the argument that our methodology has a tendency to undersam-
ple low activity flares when compared to VNF. Our analysis shows
that the undersampling is due to less observation opportunities by
SLSTR, which can be traced back to a slightly earlier overpass time
and a much smaller swath.
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Figure 21. Comparison of the average retrieved temperature at the
flaring locations for VIIRS Nightfire (locations shown in Fig. 16 in
red) and for SLSTR (locations shown in Fig. 4 in blue). Relative
frequency is used to ensure comparability independently of the to-
tal number of observations (6232 flaring locations for SLSTR and
10 185 flaring locations for VIIRS Nightfire).

Figure 22. Comparison between the SWIR-radiance method
(Fisher and Wooster, 2018) and the SLSTR-based Planck curve fit-
ting. The method derived by Fisher and Wooster (2018) and ap-
plied to SLSTR by Fisher and Wooster (2019) was applied to the
hotspots detected by our method at flaring locations. Only detec-
tions with one pixel and whose retrieved temperature was in the
range considered valid for the SWIR-radiance method (between
1600 and 2200 K) were considered. The continuous line represents
the 1 : 1 relationship. The dashed line is the regression line between
the methods.

estimation by the SWIR-radiance method for lower temper-
ature detections.

We further quantify the black carbon (BC) emissions due
to gas flaring. We assume that temperature is an indication of
the completeness of combustion and use the retrieved flame
temperature to determine the emission factor for each sin-
gle detection, bounded by the range of previously published
emission factors. We assume that a temperature close to the
adiabatic flame temperature corresponds to the lower bound
of the emission factor range considered, while the lowest
temperature corresponds to the upper bound. The minimum,
maximum, and best estimates for the BC emissions are com-
puted in the same way as the flared volume. Our resulting
best estimate for the emission of BC to the atmosphere by
gas flaring in 2017 is 73 Gg with a confidence interval of
[20,239] Gg, with Iraq, Iran, Russia, and Algeria being re-
sponsible for roughly one-half of those emissions. The most
active flaring location, which is also the one with the highest
emissions, is estimated to have yearly emissions of 0.35 Gg
of BC in 2017.

This study shows that the SLSTR instruments on-board the
Copernicus Sentinel-3 satellites are well suited for the quan-
titative characterisation of the gas flares in terms of flame
temperature, size, and radiative power, as well as BC emis-
sions. This will allow us to increase the detection opportunity
for gas flares in an observation system that comprises SLSTR
and VIIRS instruments.
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