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A B S T R A C T   

Background: The SARS-CoV-2 virus has been spreading in Germany since January 2020, with regional differences 
in incidence, morbidity, and mortality. Long-term exposure to air pollutants as nitrogen dioxide (NO2), nitrogen 
monoxide (NO), ozone (O3), and particulate matter (<10 μm PM10, <2.5 μm PM2.5) has a negative impact on 
respiratory functions. We analyze the association between long-term air pollution and the outcome of SARS-CoV- 
2 infections in Germany. 
Methods: We conducted an observational study in Germany on county-level, investigating the association be-
tween long-term (2010–2019) air pollutant exposure (European Environment Agency, AirBase data set) and 
COVID-19 incidence, morbidity, and mortality rate during the first outbreak of SARS-CoV-2 (open source data 
Robert Koch Institute). We used negative binominal models, including adjustment for risk factors (age, sex, days 
since first COVID-19 case, population density, socio-economic and health parameters). 
Results: After adjustment for risk factors in the tri-pollutant model (NO2, O3, PM2.5) an increase of 1 μg/m3 NO2 
was associated with an increase of the need for intensive care due to COVID-19 by 4.2% (95% CI 1.011–1.074), 
and mechanical ventilation by 4.6% (95% CI 1.010–1.084). A tendency towards an association of NO2 with 
COVID-19 incidence was indicated, as the results were just outside of the defined statistical significance (+1.6% 
(95% CI 1.000–1.032)). Long-term annual mean NO2 level ranged from 4.6 μg/m3 to 32 μg/m3. 
Conclusions: Our results indicate that long-term NO2 exposure may have increased susceptibility for COVID-19 
morbidity in Germany. The results demonstrate the need to reduce ambient air pollution to improve public 
health.   

1. Trial registration number and date of registration 

Not applicable. 

2. Introduction 

The COVID-19 pandemic continues to have severe implications for 

societies around the world, with major impacts on the health care sector. 
Early during the pandemic, there was evidence that ambient air pollu-
tion can increase the vulnerability and susceptibility to severe acute 
respiratory syndrome-coronavirus-2 (SARS-CoV-2) (Domingo et al., 
2020). In general, ambient air pollution is a major environmental risk 
factor, related to acute and chronic respiratory diseases, lung cancer, 
stroke, and cardiovascular diseases (Environment Agency, 2020). 
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navirus Disease 2019; DIVI, German Interdisciplinary Association for Intensive Care and Emergency Medicine; ICU, intensive care unit; SARS-CoV-2, severe acute 
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Long-term exposure to air pollutants can also increase the risk to 
develop acute respiratory distress syndrome (ARDS) (Rhee et al., 2019; 
Reilly et al., 2019). 

Emerging in December 2019 in Wuhan, China, SARS-CoV-2 has 
spread around the globe. It has since affected more than 540 million 
people and caused 6.3 million deaths approximately two years after 
emergence (Hopkins University and Medicine, 2022). The development 
of ARDS associated to COVID-19 infection is the major cause for 
admission to intensive care units (ICU). Morbidity and mortality rate in 
COVID-19 diseases are also impacted by a variety of individual risk 
factors (e.g., age, sex, and chronic diseases such as hypertension, 
obesity, etc. (Williamson et al., 2020; Dorjee et al., 2020), and/or low 
socio-economic status (Hsu et al., 2020)). To improve the reliability of 
statistical models on COVID-19, it is important to adjust for these risk 
factors (Villeneuve and Goldberg, 2020). 

Since January 2020 many studies have analyzed the association 
between air pollution and COVID-19 incidence and mortality, however 
few studies focused on the severity of COVID-19 as a parameter, (e.g., 
the need for intensive care treatment or mechanical ventilation), or 
adjusted their model with risk factors, such as age, sex, population 
density, socio-economic status and/or health parameters (Marques 
et al., 2021). 

Here we explore the impact of long-term ambient air pollution on the 
incidence, the need for ICU treatment, the need for mechanical venti-
lation, and the mortality caused by SARS-CoV-2 infections in Germany, 
based on data from the first COVID-19 outbreak in spring 2020. 

3. Methods 

We conducted an observational, county-based study normalized to 
population in Germany for the first COVID-19 outbreak, March–May 
2020, to analyze the association between long-term (2009–2019) ex-
posures of nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), and 
particulate matter (aerodynamic diameter <10 μm (PM10), aerodynamic 
diameter <2.5 μm (PM2.5)) with COVID-19 cases, deaths, incidence, the 
numbers of occupied ICU beds, occupied mechanical ventilators on the 
ICU, and COVID-19 mortality. 

Ethical approval was obtained from the ethical commission of the 
Charité (EA2/038/21; head: Prof. Dr. Kaschina). Patient consent was 
waived, because no individual patient data were collected and data 
analysis was performed anonymously. 

3.1. Study area and COVID-19 situation in Germany 

Since February 1, 2020, any suspected COVID-19 case had to be 
reported to the national health authorities, the Robert Koch Institute 
(RKI) (Koch Institute, 2022). Local public health departments at county 
level assessed COVID-19 cases and fatalities daily. 

Test capacities increased fast within the first weeks and had a suffi-
cient level since March and could be performed throughout Germany if 
needed. The first prominent COVID-19 case was announced January 27 
by the RKI. On March 22 all federal states in Germany announced social 
distancing, prohibition of gatherings of more than 2 people, with the 
exception of household members and closure of schools and daycare 
facilities. 

From April 1 the German Interdisciplinary Association for Intensive 
Care and Emergency Medicine (DIVI) implemented a registry for all ICU 
beds and mechanical ventilation capacities on ICUs within Germany 
(Koch Institut, 2022). The aim was to facilitate patient care in case of 
insufficient ICU bed capacities. Within the DIVI registry, each hospital 
reported how many COVID-19 patients needed ICU treatment and me-
chanical ventilation daily. As of April 16, reporting to the DIVI registry 
was mandatory for all German hospitals. Due to the centralized infor-
mation sharing made possible by the DIVI registry, ICU and ventilator 
capacities never fell short during the outbreak in Germany in spring 
2020. 

The first outbreak of COVID-19 cases started in February 2020 and 
had the highest numbers of new COVID-19 infections registered in the 
week from March 16 –March 23, with more than 3000 new cases re-
ported daily. The highest number of COVID-19 patients needing ICU 
care were reported on April 18, with 2922 patients. Declining numbers 
of COVID-19 infections resulted in a cautious opening of playgrounds, 
zoos, and churches at the end of April 2020. Private gatherings with 
people from another household were allowed from May 6, schools 
reopened on May 4 and borders to surrounding countries were gradually 
reopened from May 15, 2020. Slight variations in reopening existed 
across states in Germany but were generally within a day or two of those 
dates given here. 

3.1.1. COVID-19 data 
COVID-19 cases, deaths, and first documented case (date) in each 

county were obtained from the open source database of the Robert Koch 
Institute (Koch Institute, 2022). We included COVID-19 cases and deaths 
from March 4, 2020, the date when the International Travel Trade Show 
in Berlin and the Leipzig book fair were canceled and private meetings 
were restricted to members of the own household, to avoid the influence 
of cluster events. Data were included up to May 16, after which lock 
down restriction began to be lifted. Incidence and mortality rate per 100, 
000 inhabitants were calculated at county level. 

To sub-classify COVID-19 patients with a severe course of the illness, 
we extracted the number of occupied ICU beds and mechanical venti-
lators on the ICU from the DIVI registry (Koch Institut, 2022). The 
hospital-based reported data were allocated to the appropriate county in 
Germany. Data were included from April 16, the start of mandatory 
reporting, until May 16, when lock down restrictions were lifted. Data 
were calculated per 100,000 inhabitants. For additional information on 
data pre-processing see the supplemental material, Section S1. 

3.1.2. Air pollution data 
Long-term air pollution data were collected from 2010 through 

2019. The preparation of the air pollution data to provide concentra-
tions at the level of county are provided in detail in Caseiro et al. (2021) 
and described briefly below (Caseiro and von Schneidemesser, 2021). 

Hourly concentrations of NO2, NO, O3, PM2.5, and PM10 at back-
ground stations were downloaded from Airbase (Environment Agency, 
2021). Metrics, e.g., annual mean concentration, were calculated at the 
spatial level of county in Germany, corresponding to the Nomenclature 
of Territorial Unit for Statistics level 3 (NUTS-3). To gap-fill where air 
quality monitoring data was not available, a relationship between 
Copernicus Atmospheric Monitoring Service (CAMS) global reanalysis 
data (Inness et al., 2019) and the monitoring data was developed and 
used to estimate missing data. See Table 1 for federal state level averages 
or Caseiro et al. (2021) for access to the complete open-access dataset 
(Caseiro and von Schneidemesser, 2021). For the present study, the 
“average” scenario was chosen for the main analysis and the “remote” 
and “urban” scenarios were considered for sensitivity analyses. 

3.1.3. Basic population data, socio-economic and health-related parameters 
Population density, age (fraction of people older than 64) and sex 

(fraction of female) distribution were extracted from the open source 
database of the Federal Statistical Office of Germany (Bundesamt, 2021) 
on county level for the year 2019 (detailed description see supplement 
information (SI) Figure S1). 

Socio-economic and health data were extracted from a representa-
tive epidemiological and health-monitoring survey (November 
2014–July 2015; 24,016 subjects) conducted in Germany by the RKI 
(Sass et al., 2017). Extracted data included the fraction of people 
suffering hypertension, coronary heart disease (CHD), diabetes, asthma, 
chronic kidney disease, obesity (body mass index above 30), and daily 
smoking behavior. Furthermore, socio-economic parameters including 
the fraction of people born in non-EU states, people with low 
socio-economic status, and school attendance of 10 years or less were 
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Table 1 
Descriptive statistics at State level in Germany (covering 392 counties) for COVID-19 disease parameters and air pollution. Disease parameters are per 100,000 
residents, given as medians. Values in parentheses are the 25th and 75th percentiles. Long-term air pollution concentrations from 2010 through 2019, inclusive, are 
provided as mean ± standard deviation with the minimum and maximum values in parentheses. These values reflect the mean and the standard deviation, and in 
parentheses percentiles 25 and 75, of the decadal means for individual counties within each state.   

County data COVID-19 disease parameter Long-Term Air Pollutants 2010 - 2019 

Federal state Counties 
(n) 

Population 
(n) 

First 
Case 
(Date) 

Incidence 
04.03.- 
16.05.20 

Mortality 
04.03.- 
16.05.20 

Days on 
ICU 
16.04.- 
16.05.20 

Days with 
ventilation 
on ICU 
16.04.- 
16.05.20 

Annual 
mean 
NO2 
(µg/m3) 

Annual 
mean 
NO (µg/ 
m3) 

O3 daily 
8h max 
(µg/m3) 

Annual 
mean 
PM2.5 
(µg/m3) 

Annual 
mean 
PM10 
(µg/m3) 

Baden- 
Württember 

42 10,867,995 03.01.20 660 (461/ 
1110) 

37 (19/ 
62) 

82 (60/ 
118) 

59 (39/85) 19.7 +
3.8 
(6.5/ 
28.9) 

11.1 +
3.2 
(3.1/ 
21.1) 

164.9 +
5.1 
(155.4/ 
177) 

12.8 +
1.32 
(6.5/ 
13.9) 

17.4 +
1.4 
(11.5/ 
19.2) 

Bavaria 91 12,637,769 02.01.20 346 (226/ 
500) 

17 (8/30) 72 (36/ 
178) 

52 (25/116) 18.6 ±
3.5 
(8.6/ 
30.0) 

9.8 ±
3.0 
(1.7/ 
29.1) 

161.3 ±
2.9 
(151.1/ 
168) 

12.9 ±
0.6 (10/ 
14.2) 

17.4 ±
1.4 
(10.1/ 
20.8) 

Berlin 1 3,669,491 01.01.20 176 6 105 85 20.0 10.7 162.6 16.7 21.2 
Brandenburg 17 2,422,215 06.01.20 168 (67/ 

357) 
6 (2/20) 21 (7/ 

48) 
15 (5/28) 13.9 ±

3.5 
(4.7/ 
17.7) 

6.9 ±
3.2 
(0.6/ 
14.8) 

159.3 ±
3.1 
(152.5/ 
162.5) 

13.9 ±
1.4 
(11.2/ 
16.3) 

18.3 ±
1.8 
(14.3/ 
20.8) 

Bremen 2 681,202 26.02.20 627 (83/ 
627) 

23 (5/23) 79 (50/ 
79) 

47 (35/58) 21.8 ±
0.4 
(21.5/ 
22.1) 

6.5 ±
0.1 
(6.4/ 
6.6) 

153.1 ±
0.3 
(152.9/ 
153.3) 

13.4 ±
0.3 
(13.3/ 
13.6) 

18.6 ±
0.0 
(18.6/ 
18.6 

Hamburg 1 1,847,253 17.01.20 270 14 120 98 23.5 14.2 151.5 14.1 20.2 
Hessen 26 6,288,080 01.01.20 306 (221/ 

395) 
14 (5/24) 68 (38/ 

119) 
49 (23/91) 18.2 ±

6.1 
(7.9/ 
32) 

9.6 ±
5.3 
(1.3/ 
20.9) 

166.3 ±
6 
(154.5/ 
181.2) 

13.2 ±
0.5 
(11.5/ 
13.8) 

17.0 ±
2.5 
(10.6/ 
20.8) 

Mecklenburg- 
West 
Pomerania 

8 1,608,138 28.02.20 80 (78/ 
120) 

2 (2/3) 4 (17/ 
89) 

1 (0/16) 10.5 ±
4.4 
(5.7/ 
16.5) 

3.3 ±
3.1 
(0.8/ 
8.3) 

156.3 ±
4.8 
(149.8/ 
162.5) 

12.6 ±
0.5 (12/ 
13) 

17.3 ±
1.4 
(14.7/ 
18.4) 

Lower Saxony 45 7,667,567 01.01.20 160 (105/ 
301) 

8 (3/17) 24 (7/ 
67) 

11 (2/39) 15.6 ±
3.0 
(7.2/ 
19.5) 

7.6 ±
2.1 (1/ 
9.8) 

161.2 ±
3.9 
(147.2/ 
171.8) 

12.6 ±
0.8 
(9.8/ 
13.6) 

16.8 ±
1.2 
(11.7/ 
18.6) 

North Rhine- 
Westphalia 

53 17,947,221 01.01.20 601 (400/ 
814) 

23 (13/ 
39) 

68 (36/ 
93) 

43 (27/72) 21.9 ±
4.5 
(10.8/ 
31.8) 

15.2 ±
5. (8.7/ 
36.8) 

166.1 ±
6.2 
(160.4/ 
180.1) 

14.0 ±
1.3 
(11.5/ 
17.7) 

19.5 ±
0.3 
(15.7/ 
24.1) 

Rhineland- 
Palatinate 

35 3,939,294 21.01.20 155 (101/ 
223) 

5 (2/10) 17 (4/ 
89) 

10 (0/51) 17.1 ±
5.5 
(6.7/ 
30.6) 

10.5 ±
4.8 
(3.0/ 
23.1) 

164.0 ±
4.6 
(153.9/ 
172.6) 

12.9 ±
1.1 
(8.3/ 
14.3) 

16.9 ±
2.1 
(11.6/ 
19.9) 

Saarland 6 986,887 31.01.20 279 (191/ 
690) 

12 (4/46) 55 (27/ 
128) 

29 (10/50) 17.7 ±
2.5 
(15.6/ 
22.3) 

9.5 ±
1.5 
(6.8/ 
10.9 

163.3 ±
2.8 
(160.2/ 
167.3) 

13.1 ±
0.5 
(12.4/ 
13.7) 

17.6 ±
0.7 
(16.5/ 
18.8) 

Saxony 13 4,071,971 01.01.20 362 (217/ 
567) 

12 (5/22) 34 (10/ 
70) 

21 (7/32) 16.4 ±
3.8 
(10.1/ 
21.2) 

8.0 ±
4.1 
(2.8/ 
15.9) 

161.3 ±
3.9 
(155/ 
167.7) 

13.5 ±
1.0 (11/ 
14.6) 

17.8 ±
2.5 
(12.4/ 
20.9) 

Saxony- 
Anhalt 

14 2,194,782 22.02.20 109 (66/ 
156) 

3 (2/7) 21 (7/ 
40) 

7 (3/25) 15.8 ±
3.3 
(9.9/ 
19.4) 

7.4 ±
2.5 
(3.1/ 
11.2) 

161.1 ±
3.4 
(153.8/ 
168.5) 

13.7 ±
1.2 
(11.7/ 
15.7) 

18.1 ±
1.2 
(15.8/ 
20.2) 

Schleswig- 
Holstein 

15 2,903,772 05.01.20 169 (83/ 
281) 

4 (3/15) 31 (5/ 
40) 

19 (3/29) 14.7 ±
3.4 
(6.1/ 
21) 

7.7 ±
2.3 
(1.0/ 
12.4) 

153.0 ±
7.7 
(141.7/ 
162.7).0 

12.6 ±
0.8 
(10.8/ 
13.7) 

16.9 ±
1.3 
(13.7/ 
19.7) 

Thuringia 23 2,133,378 21.01.20 98 (60/ 
151) 

3 (2/12) 21 (9/ 
125) 

21 (5/85) 15.7 ±
4.5 
(4.6/ 
21.4) 

9.7 ±
3.7 
(0.6/ 
18.7) 

159.0 ±
3.3 
(152.5/ 
163.8) 

12.6 ±
1.2 
(8.0/ 
13.8) 

16.9 ±
2.4 
(10.9/ 
20.0) 

All Counties 392 81,967,016 01.01.- 
28.02. 
2020 

176 (112/ 
272) 

7 (3/15) 57 (26/ 
107) 

39 (14/74) 17.8 ± 
4.7 
(4.6/ 
32.0) 

10.0 ± 
4.5 
(0.6/ 
36.8) 

162.2 ± 
5.3 
(141.7/ 
181.2) 

13.1 ± 
1.1 
(6.5/ 
17.7) 

17.6 ± 
1.9 
(10.1/ 
24.1)  
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also extracted. These data points were only available at the state level. 
Age range, sex, socio-economic and health data were included based 

on identified risk factors for a severe COVID-19 course, as in published 
systematic reviews focusing on that subject (Williamson et al., 2020; 
Dorjee et al., 2020). 

3.2. Statistics 

From 402 counties within Germany, we included 392 counties in our 
analysis, 10 counties were excluded due to no DIVI data (no reporting 
hospitals). 

We calculated negative binominal models to estimate the association 
between long-term air pollutant exposure and COVID-19 parameters. 
We fit single-pollutant and tri-pollutant models to estimate the effect of 
each pollutant without and with control for co-pollutants. Since we 
found high correlations between NO2 and NO (Pearson Correlation 
0.879, p-value < 0.001) and between PM10 and PM2.5 (Pearson Corre-
lation 0.621, p-value < 0.001) we performed a tri-pollutant model 
including NO2, O3 and PM2.5 to avoid collinearity. 

We adjusted our models by the following parameters: days since first 
COVID-19 case, age >64 years, sex distribution, and population density. 
In the next step, we adjusted our models for the potential health and 
socio-economic confounders. 

To improve the validity of our model we conducted a number of 
sensitivity analyses, including limiting the analysis to include only 
counties with modelled air quality data below 20% (i.e. measured data 
representing over 80%), different periods for incidence and mortality 
analysis (from January 1 until May 16, 2020; from April 16 until May 
16, 2020), and case fatality rate. 

We did not adjust for test capacity or availability of health care 
services, since shortages in these areas was not an issue in Germany 
(ALM-Akkreditierte Labore in der Medizin, 2021). 

We did not perform zero-inflated negative binominal models since 

we had no zeros in COVID-19 cases and only 19 zeros in COVID-19 
deaths per county. We had no zeros in ICU beds occupied and 17 
zeros for required mechanical ventilation. 

Results of the negative binomial models are presented as main effect 
estimates with 95% confidence intervals. For the count component, the 
results indicate the change in percentage of COVID-19 cases, deaths, 
incidence, occupied ICU beds, required mechanical ventilation in ICU 
and COVID-19 mortality also with a 95% confidence interval. Calcula-
tions were performed with SPSS, Version 26 (Copyright IBM, Inc., Chi-
cago, IL 60606, USA). 

4. Results 

In 392 counties in Germany from March 4 - May 16, 2020, there were 
169,840 COVID-19 cases and 8433 deaths. COVID-19 parameters and 
long-term air pollution data are given in Table 1 and Figs. 1 and 2. 

All results discussed here are those for COVID-19 parameters per 
100,000 inhabitants. For model results based on counts, see SI, Tables S4 
– S9. In the tri-pollutant model (NO2, O3, PM2.5) adjusted to basic 
population data and all confounders (Table 2), we found a 1 μg/m3 in-
crease in NO2 was significantly associated with an increase in occupied 
ICU beds by 4.2% (95% CI 1.011–1.074) and the need for mechanical 
ventilation by 4.6% (95% CI 1.010–1.084). In the same tri-pollutant 
model but with PM10 rather than PM2.5, a 1 μg/m3 increase in NO2 
was associated with an increased risk for all COVID-19 parameters 
(incidence, ICU beds, ICU ventilation, mortality), ranging from 2.8% to 
6.6% (see SI, Table S9). The positive association of NO2 and an increased 
risk for needing an ICU bed and mechanical ventilation (see SI, Tables S1 
– S9) was persistent throughout all models, including the single 
pollutant models, indicating a robust result. 

The model results adjusted to basic population data but without 
adjustment to confounders also indicate a strong association between 
NO2 and all COVID-19 parameters (a 1 μg/m3 increase in NO2 resulted in 

Fig. 1. Title: Air pollution metrics for 2010 through 2019, Legend: The plots show air pollution metrics that are averaged across all 10 years by county on a 
log scale. 
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increased risks ranging from 4.7% to 10.3% in the tri-pollutant models 
(see SI, Tables S5, S8) and from 3.4% to 4.6% in the single pollutant 
models (see SI, Table S2)). 

The only pollutants other than NO2 to show a significant association 
to the COVID-19 parameters in the single pollutant models were NO 
(incidence, ICU beds, and ICU ventilation) and to a more limited extent 
O3 (incidence) (see SI, Table S1). However, after adjustment to basic 
population data only NO had a significant positive association to inci-
dence, ICU beds, and ICU ventilation (see SI, Table S2), and after 
adjustment to all confounders none of the associations to NO and O3 
remained significant (see SI, Table S3). 

For comparability with previous studies (see discussion section) we 
calculated models with no adjustments for number of inhabitants 
(counts only). These models show similar results, typically with stronger 
associations. 

Sensitivity analyses were performed that evaluated alternative air 
pollution metrics (urban or remote), COVID-19 parameters, and time 
scales, but this did not change the results in a meaningful way (see SI, 
Tables S10 – S14). 

5. Discussion 

In our county-level, observational study, we identified associations 
between long-term air pollution and COVID-19 disease parameters in 
Germany in spring 2020. Throughout all models, long-term NO2 expo-
sure had the most persistent impact on all COVID-19 disease parameters. 
After adjustment for all risk factors, our tri-pollutant model (including 
NO2, O3, and PM2.5) showed that a 1 μg/m3 increase in annual mean 
NO2 concentration was associated with an increase in ICU beds occu-
pancy owing to COVID-19 by 4.2% (95% CI 1.011–1.074), and me-
chanical ventilation in the ICU by 4.6% (95% CI 1.010–1.084); 
incidence and mortality also had increased odds ratios, but not statis-
tically significant. 

5.1. Models including confounders 

Studies adjusting for demographic, meteorological, socio-economic 
and health related factors found a positive association between long- 
term PM2.5 exposure and COVID-19 mortality during spring 2020 in 
the USA (Wu et al., 2020) and with COVID-19 cases, hospital admis-
sions, and deaths in the Netherlands (Cole et al., 2020). A study 
analyzing the impact of long-term exposure (2014–2019) to NO2, O3, 
PM10 and PM2.5 on COVID-19 mortality for each pollutant individually 
during spring and winter 2020 in California, USA also found positive 
associations for all included pollutants (Garcia et al., 2022). Studies 
correlating multi-pollutant exposure with COVID-19 disease parameters 
in England and the USA found that NO2 was the main contributor to 
increased numbers of COVID-19 deaths and mortality rate (Travaglio 
et al., 2021; Liang et al., 2020), while they did not find an association 
between PM2.5 and O3 and COVID-19 mortality (Travaglio et al., 2021; 
Liang et al., 2020). However, in the study by Travaglio et al. from En-
gland, COVID-19 cases were also positively associated with PM2.5 
(Travaglio et al., 2021). An increase of 1 μg/m3 NO2 was associated with 
3.3% more cases and 3.1% more deaths in England (Travaglio et al., 
2021) and an increase of 8.6 μg/m3 NO2 was associated with 11.3% 
higher case-fatality rate and a 16.2% higher mortality rate in the United 
States. These results are in line with our tri-pollutant model including 
demographic, socio-economic and health related risk factors. Further-
more, we showed that an increase of 1 μg/m3 NO2 increased COVID-19 
morbidity, specifically the need for ICU beds (+4.2%) and the need for 
mechanical ventilation (+4.6%). 

In a global exposure setup analyzing the impact of PM2.5 on COVID- 
19 mortality based on epidemiological data from the USA and China, it 
was estimated that PM2.5 contributes to ~15% to COVID-19 mortality 
worldwide, and to ~19% in Europe, where 70–80% of the anthropo-
genic fraction from the air pollution are attributed to fossil fuel com-
bustion (Pozzer et al., 2020). Other pollutants were not quantified. 

Fig. 2. Title: COVID-19 parameters in numbers and per 100,000 residents by county, Legend: COVID-19 parameters in numbers and per 100,000 residents by 
county evaluated in the models for the dates given above on a log scale. For counties that were reporting but had e.g., no deaths, a zero is shown. The counties that 
are white had no hospitals reporting DIVI data and were therefore left out of the analysis. 
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5.2. Models without adjustment to confounders 

A number of studies calculated correlations between e.g., COVID-19 
mortality and air pollutants (Ogen, 2020; Fattorini and Regoli, 2020). 
For example, a study by Ogen analyzed the correlation between 
COVID-19 mortality and NO2 concentrations retrieved from satellites 
during the first outbreak in 2020 for 66 administrative regions in Italy, 
Spain, France, and Germany. A high correlation between NO2 and 
mortality was found, specifically 83% of all deaths (which included in 
total 3701 fatalities by March 19th, 2020) occurred in NO2 hot spot 
regions where the maximum concentration was above 100 μmol/m2 

(Ogen, 2020). Such studies are relevant indicators for the potential 
impact air pollution may play in the context of respiratory pandemics. 
As noted in these studies, their conclusions should be used to motivate 
more in-depth research where a greater number of factors can be 
incorporated, such as we have here. For example, such a study from Italy 
that looked at the impact of long-term exposure (2016–2019) to 
different air pollutants (NO2, PM2.5, PM10, and O3) on COVID-19 cases 
found significant positive correlations with all air pollutants (Fattorini 
and Regoli, 2020). This is similar to our single pollutant model with no 
adjustment to number of inhabitants or confounders results where both 
COVID-19 cases and deaths were positively associated with almost all 
pollutants (Table S2). However, once the models are adjusted for pop-
ulation data and other confounders, many of these associations are no 
longer significant. 

5.3. Air quality and pathophysiology 

Despite the somewhat different results, all studies found a link be-
tween COVID-19 disease parameters and exposure to long-term ambient 
air pollutants (Marquès and Domingo, 2022). Since the beginning of 

industrialization, ambient air pollution, caused by fossil fuel combustion 
for e.g., energy production and transport, as well as industrial agricul-
ture, is an omnipresent hazard for human beings all around the world 
(Environment Agency, 2020). Children, pregnant women, older people, 
and those with comorbidities are most susceptible to air pollutants 
(Environment Agency, 2020). In Germany ca. 80,000 premature deaths 
per year are attributed to air pollution (Lelieveld, 2017). Recently, the 
World Health Organization (WHO) tightened the air quality guidelines, 
now recommending that the annual mean level of 5 μg/m3 for PM2.5 and 
15 μg/m3 for PM10 not be exceeded. Ground level O3 should not exceed 
an 8-h daily maximum of 100 μg/m3 and annual mean NO2 should not 
exceed 10 μg/m3 (World Health Organization, 2021). Of the 402 
counties in Germany, only 6.9% and 7.7% of counties met the recom-
mended limit for NO2 and PM10, respectively, but none met the rec-
ommended limit for O3 and PM2.5 (see SI, Section 4). 

Exposure to air pollutants causes oxidative stress, endothelial 
dysfunction, thrombogenicity and systemic inflammation, being asso-
ciated with elevated levels of interleukin (IL)-1, IL-6, IL-8, tumor ne-
crosis factor-α, and C-reactive protein leading to an increase in 
cardiovascular and respiratory diseases (Lederer et al., 2021). Oxidative 
stress on the level of the epithelial lining fluid of the lungs occurs when 
inhaling air pollutants (Lakey et al., 2016). Inflammation is in part 
regulated by the renin-angiotensin system based on a feedback loop 
including the two main effectors Angiotensin II and Angiotensin 1-7 
(Cantero-Navarro et al., 2021). The biological effects of both effectors 
are contrary, since Angiotensin II promotes vasoconstriction, cell 
growth, fibrosis, and increases inflammation and oxidative stress while 
Angiotensin 1-7 does the opposite – vasodilation, decreasing inflam-
mation and oxidative stress and inhibiting cell growth (Forrester et al., 
2018; Santos et al., 2018). A critical step in the transformation of 
Angiotensin II into Angiotensin 1-7 and thereby regulating systemic 
inflammation is run by the Angiotensin-converting-enzyme 2 (ACE-2) 
(Pucci et al., 2020). Importantly, the SARS-CoV-2 spike protein binds 
directly to the ACE-2 receptor to enter the cells (Wang et al., 2020; 
Zhang et al., 2020), reducing ACE-2 expression and worsening systemic 
inflammation (Kuba et al., 2005). ACE-2 has a protective role in ARDS 
by downregulating Angiotensin II and mitigating pro-inflammatory ef-
fects. In animal studies, it has been shown that exposure to air pollutants 
decreases Angiotensin 1-7 and ACE-2, thereby increasing Angiotensin-II 
(Du et al., 2020). The picture that emerges here is an imbalance of 
the renin-angiotensin system, over-activating the Angiotensin-II 
/inflammation side by SARS-CoV-2 and air pollution, which may be 
the underlying pathophysiology for all the above reviewed studies, 
providing an explanation for the positive association between exposure 
to ambient air pollution and COVID-19 incidence, morbidity, and mor-
tality rates. 

5.4. Limitations 

Since our study was an observational study normalized to popula-
tion, impact at the individual level from pre-existing diseases or 
behavioral differences following the pandemic lock-down restrictions 
are not included, which could result in bias. Moreover, we calculate an 
association between air pollutants and COVID-19 disease parameters, 
which does not guarantee causal relations. 

The health and socio-economic confounders included in our model 
were only available at federal state level and not on county level. This 
could have minimized the associations in our results from the models 
including adjustment to all confounders. 

Our study was conducted in Germany, with the respective compo-
sition in socio-economic status of the population, a relatively high-level 
health care system with sufficient capacity and overall good accessi-
bility, and with substantial COVID-19 restrictions that were imple-
mented, hence our results are not generalizable to all countries. 

In general, the course of COVID-19 is influenced substantially by 
individual risk profiles; however, some of these risk factors are also 

Table 2 
Tri-Pollutant Model (NO2, O3 and PM2.5) for the COVID-19 disease parameters 
after adjusting for basic county data (population density (people/km2), sex (% 
female), age (% 65 years and older), first case (days from first COVID-19 case 
until start of analysis)) and socio-economic and health data at federal state level 
(low socio-economic status (%), maximal 10 years school attendance (%), non- 
EU born (%), Hypertonia (%), coronary heart disease (%), diabetes mellitus (%), 
asthma (%), chronic kidney disease (%), BMI ≥30 (%), daily smoking (%)). All 
parameters were investigated for 04.03. – May 16, 2020, except those noted with 
an asterisk, which cover 16.04. – May 16, 2020. Results listed in red are 
considered significant based on the confidence interval. Exp (B) is the expo-
nentiation of the B coefficient, which is an odds ratio.  

COVID-19 parameters 
per 100,000 inhabitants 

Air pollutant 
metric 

Exp 
(B) 

95% Confidence 
Interval 

p- 
value 

COVID-19 incidence NO2 annual 
mean 

1.016 1.000–1.032 0.055  

O3 daily 8h 
max 

0.997 0.987–1.008 0.623  

PM2.5 annual 
mean 

0.984 0.931–1.039 0.555 

ICU beds* NO2 annual 
mean 

1.042 1.011–1.074 0.008  

O3 daily 8h 
max 

0.993 0.973–1.012 0.462  

PM2.5 annual 
mean 

0.914 0.820–1.018 0.102 

ICU ventilation* NO2 annual 
mean 

1.046 1.010–1.084 0.013  

O3 daily 8h 
max 

0.997 0.975–1.020 0.824  

PM2.5 annual 
mean 

0.906 0.797–1.031 0.134 

COVID-19 mortality NO2 annual 
mean 

1.027 0.996–1.060 0.088  

O3 daily 8h 
max 

0.988 0.968–1.009 0.258  

PM2.5 annual 
mean 

0.936 0.843–1.040 0.217  

S. Koch et al.                                                                                                                                                                                                                                    



Environmental Research 214 (2022) 113896

7

triggered by chronic exposure to air pollution, such as cardiovascular 
diseases, diabetes, acute respiratory dysfunction syndrome, COPD, and 
ischemic heart disease (Rhee et al., 2019; Lelieveld, 2017; Brook et al., 
2004; Bowe et al., 2018). Because of this connection, there may be a bias 
in our models that underestimate the impact of air pollution on health 
during the COVID-19 pandemic. 

6. Conclusion 

Our results add another piece to the puzzle, demonstrating the 
impact of air pollution in the COVID-19 pandemic. They show that the 
risk to need ICU treatment and mechanical ventilation after COVID-19 
infection is influenced by individual, long-term exposure to NO2. 
While the COVID-19 pandemic may end by reaching herd immunity 
through infection or vaccination, exposure to ambient air pollution will 
continue to affect the health of people, with a focus on NO2 in Germany. 
The only remedy is reducing emissions. Since the main source for out-
door NO2 are motor vehicles, a transition to clean transportation in 
Germany is urgently needed. This will improve air quality, help mitigate 
climate change and improve population health and quality of life. 
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