Environmental Science: Atmospheres

Supplemental Information for Pre-monsoon Submicron Aerosol Composition and Source Contribution in the Kathmandu Valley, Nepal by Werden et al.

Figure SI1: NAMaSTE inlet setup for particle and gas phase measurements from Bode Thimi, Nepal, April 2015.

Figure SI2: AMS-PMF heuristics of (a) Q/Q_{exp} for each solution size, (b) Q/Q_{exp} to each FPEAK within the selected solution, (c) time series of total mass, (d) scaled residuals for each m/z for the solution, (e) Residuals for each m/z for the PMF solution, (f) Residual time series for the PMF solution, for NAMaSTE1 in the Kathmandu Valley, April 2015.

Figure SI3: Optical particulate PM_{10} (a), black and brown carbon (f), gas-phase CO (b), NO and NO₂ (c), CO₂ (g), O_x and O₃ (h), and meteorological measurements of pressure (d), wind speed colored by direction (e), relative humidity (j), and temperature and dew point (j), measurements available coincident with AMS measurements for NAMaSTE1 in the Kathmandu Valley, Nepal, April 2015.

Figure SI4: Weather metric d'urnais for NAMaSTE1 in April 2015 at Bode in Kathmandu Valley, Nepal.

Figure SI6: Comparison of different co-located PM measurement methods from Bode in the Kathmandu Valley during NAMaSTE1 in April 2015. (a) C-PM₁ and filter based PM_{2.5}, (b) C-PM₁ and optical PM₁, (c) optical PM₁ and PM_{2.5}, (d) diurnal fraction of PM sizes and size fractions. Comparison of AMS OC and OMM-CMB OC sources (e) OC, (f) sulfate, (g) ammonium, (h) nitrate, (i) chloride.

	Average	σ	Min	Max
Temperature (° C)	19.2	3.5	12.9	28.6
Pressure (hPa)	760	3	755	767
Relative Humidity (%)	80	14	44	100
Wind Speed (m s ⁻¹)	1.71	1.77	0	10.23
Dew Point (° C)	15.0	2.1	4.4	19.3

Table SI1: Meteorological Conditions at Bode in Madhyapur Thimi, Kathmandu Valley, Nepal, April 2015.

Diurnal Hour	C-PM ₁ (µg m ⁻³)	BC _{880nm} (μg m ⁻³)	BrC (µg m ⁻³)	Org (µg m ⁻³)	SO4 ²⁻ (µg m ⁻³)	NH4 ⁺ (μg m ⁻³)	Cl ⁻ (µg m ⁻³)	NO ₃ ⁻ (μg m ⁻³)	Wind Speed (m s ⁻¹)
1	36.8	12.6	1.9	15.5	7.3	2.6	0.7	1.4	0.6
2	44.9	14.8	-	15.4	10.0	3.4	0.9	1.4	0.6
3	49.6	17.0	-	14.7	11.6	4.3	1.9	1.5	0.6
4	46.0	15.5	0.4	14.3	10.8	3.8	1.3	1.4	0.6
5	46.4	16.6	0.5	14.9	10.6	3.7	1.2	1.4	0.4
6	53.0	17.5	-	15.1	11.7	4.1	1.5	1.5	0.5
7	62.3	21.0	1.3	16.5	12.4	4.4	1.9	1.7	0.6
8	75.8	24.0	0.5	20.5	14.1	5.6	3.0	2.2	0.5
9	64.6	16.9	4.4	23.4	13.2	5.2	2.4	2.6	0.6
10	52.8	14.3	6.3	24.2	11.0	4.3	1.5	2.6	0.9
11	28.0	9.5	2.7	23.3	6.0	2.1	0.2	1.0	1.1
12	33.3	7.6	2.2	15.4	6.3	2.1	0.2	1.0	2.1
13	25.0	5.0	1.8	15.6	4.8	1.7	0.1	0.9	2.7
14	26.2	5.2	1.8	13.7	5.2	1.8	0.2	0.9	3.6
15	23.5	4.9	1.4	13.0	5.5	1.8	0.2	0.5	3.8
16	20.3	3.8	1.3	10.3	5.1	1.6	0.1	0.4	4.1
17	21.0	4.6	1.4	9.6	5.1	1.6	0.1	0.4	3.7
18	20.7	4.3	1.6	9.3	4.7	1.4	0.1	0.4	2.9
19	24.7	5.8	2.6	10.2	4.7	1.6	0.2	0.6	2.7
20	37.4	8.0	4.4	13.3	5.2	1.9	0.4	1.2	1.7
21	34.8	7.3	3.8	20.9	5.5	1.9	0.4	1.0	1.5
22	35.9	9.3	2.7	17.4	6.3	2.2	0.4	1.1	1.1
23	37.1	9.9	2.4	16.5	7.2	2.5	0.6	1.1	0.8
24	35.2	10.4	2.4	15.1	7.2	2.3	0.4	1.0	0.5

Table SI2: Diurnal averages of PM₁ chemical species for NAMaSTE1, April 2015, Bode, Kathmandu Valley, Nepal.

Figure SI7: Time series of a) organic nitrate, nitrate, and the ratio of the two, b) particulate NO⁺ to NO₂⁺ and ANR, and diurnal pattern c) of NO₂⁺:NO⁺ Wind speed, and OrgNO₃ from NAMaSTE1 in April 2015, in the Kathmandu Valley, Nepal.

Figure SI8: Comparison of HR-AMS PMF source factors and direct source measurement mass spectra for NAMaSTE1 in Kathmandu, Nepal, 2015. (a) HR HOA compared to motorcycle emissions, (b) BBOA compared to hardwood cookstoves emissions, (c) BBOA compared to mixed agricultural burning emissions, (d) sLOA compared to clamp style brick kilns, (e) sLOA compared to Charcoal, (f) sLOA compared to zig-zag style brick kilns emissions, (g) TBOA compared to garbage burning emissions, (h) TBOA compared to mixed plastic burning, (i) TBOA compared to burning chip bag emissions.

Environmental Science: Atmospheres SI: Pre-monsoon Submicron Aerosol Composition in the Kathmandu Valley, Nepal

Table SI3: OA Factor daily averages from NAMaSTE1, April 2015, Bode, Madhyapur, Kathmandu Valley, Nepal.

Diurnal	HOA	BBOA	TBOA	sLOA	OOA1	OOA2	OOA3
Hour	$(\mu g m^{-3})$						
0	2.2	2.5	1.0	0.2	2.2	3.7	2.1
1	1.3	2.1	0.7	0.5	3.9	3.5	1.9
2	1.0	2.3	0.5	1.0	3.9	3.4	1.5
3	1.6	2.5	0.7	1.3	3.7	3.0	1.6
4	2.0	2.7	1.0	1.2	2.1	2.3	1.8
5	2.3	3.4	1.1	2.1	2.0	2.3	1.7
6	4.2	4.4	1.9	2.7	3.6	2.2	1.7
7	3.7	4.2	1.7	2.9	3.1	1.7	2.0
8	3.6	3.8	1.8	2.0	3.1	2.5	3.0
9	4.1	3.5	2.1	0.0	7.0	2.9	4.4
10	1.1	1.2	1.3	0.0	3.1	3.1	2.8
11	1.3	1.5	1.9	0.0	3.4	3.0	3.5
12	1.0	0.9	1.2	0.0	2.5	3.2	2.5
13	1.0	1.2	1.1	0.0	2.8	3.2	1.8
14	1.1	0.9	0.8	0.0	3.4	3.2	1.0
15	0.7	0.7	0.6	0.0	3.1	3.0	0.6
16	0.9	1.0	0.6	0.1	3.4	2.6	0.7
17	1.1	1.3	0.7	0.0	4.3	2.3	0.6
18	2.4	2.3	1.5	0.0	4.0	2.4	1.1
19	4.6	2.8	5.9	0.1	1.7	2.3	1.7
20	2.9	2.7	3.6	0.1	2.3	3.0	1.6
21	2.2	2.7	1.7	0.1	4.1	3.7	1.7
22	2.2	2.9	1.1	0.3	3.6	3.8	1.5
23	2.2	2.7	1.0	0.3	2.9	3.7	1.8

Figure SI9: AMS-PMF source factors and tracer m/z from UMR measurements: (a) HOA vs. m/z 57 OOA corrected (b) OOA vs. m/z 44; (c) BBOA vs. m/z 60 – 0.3% of OA; (d) TBOA vs. m/z 166. (e) LSOA vs. C₃HSO (f) Time series of OOA, BBOA, and HOA estimates in UMR compared to full PMF analysis of the HR data for NAMaSTE1, in April 2015 at Bode Madhyapur Thimi, Kathmandu Valley, Nepal.

Figure SI10: Odd oxygen and ozone compared to oxygenated organic aerosols for daytime periods of NAMaSTE1, in Kathmandu Valley, Nepal, April 2015. Linear regression of daytime OOA1 and O_x (a), OOA2 and O_x (b), OOA3 and O_x (c), OOA1 and O_3 (d), OOA2 and O_3 (e), OOA3 and O_3 (f).

OA:OC ratios						
Factor	Source	Goetz et al.,	Canagaratna et	PMF		
Tactor	Source	2018	al., 2015	NAMaSTE1		
HOA	Traffic	1.30	1.34	1.42		
BBOA	Biomass	1.62	1.64	1.68		
	Burning					
TBOA	Mixed Plastics	1.42		1.40		
	Burning					
sLOA	Clamp Brick	1.32		1.45		
	Kilns					
OOA1	SVOOA		2.25	2.33		
OOA2	MVOOA			1.71		
OOA3	LVOOA		1.84	1.87		

Table SI4: OA to OC ratios from NAMaSTE1 AMS-PMF factors, April 2015 at Bode in the Kathmandu Valley, Nepal, and other previous studies.

Table SI5: OC to BC ratios from previous studies and NAMaSTE1 factors in April 2015 at Bode in the Kathmandu Valley, Nepal.

OC:BC ratios							
	Goetz et al	Jayarathne et al	Weyant et al	Andrea and Merlet	Christian et al	Zhu et	NAMaSTE
Factor	2018	2018	2014	2001	2010	al., 2002	1
HOA	-	-	-	-	-	0.23-6.25	0.45
BBOA	3.7	6.44	-	1.8-58	-	-	3.7
TBOA	1	-	-	-	2.3	-	1
sLOA	1-52	-	0.1-0.29	-	0.16	-	0.5

Table SI6: OC source fractional comparison between AMS-PMF PM1 and CMB-OCC PM2.5 analysis from NAMaSTE1 in Bode Thimi, Ne	pal,
April 2015.	

OC Source	Daytime (%)	Overnight (%)
PM _{2.5} CMB GAS	15.1	21.9
PM ₁ PMF HOA	17.4	20.2
PM _{2.5} CMB BB	16.5	14.2
PM ₁ PMF BBOA	15	20.6
PM _{2.5} CMB Trash	17.5	17.1
PM ₁ PMF TBOA	14.3	11.5
PM _{2.5} CMB Coal	3.9	5.3
PM ₁ PMF sLOA	3.5	9.3
PM _{2.5} CMB SOA + Other	47	41.5
PM1 PMF Sum OOA	49.8	32.1

Figure SI11: Average mass and OA source fraction of elemental (a) carbon, (b) oxygen, (c) hydrogen, (d) nitrogen, and (e) sulfur, from each of the AMS-PMF factors for NAMaSTE1, Kathmandu Valley, Nepal April 2015.

Figure SI12: Comparison of HOA to tracer aerosol and gas-phase species for NAMaSTE1in April 2015 in Kathmandu Valley, Nepal.

Figure SI13: Comparison of BBOA to tracer aerosol and gas-phase species for NAMaSTE1 in April 2015 in Kathmandu Valley, Nepal.

Figure SI14: Comparison of TBOA to tracer aerosol and gas-phase species, for NAMaSTE1 in April 2015, Kathmandu, Nepal.

Figure SI15: Comparison of sLOA to tracer aerosol and gas-phase species for NAMaSTE1in April 2015 in Kathmandu Valley, Nepal.

Figure SI16: Comparison of OOA1 to tracer aerosol and gas-phase species for NAMaSTE1 in April 2015 in Kathmandu Valley, Nepal.

Figure SI17: Comparison of OOA2 to tracer aerosol and gas-phase species for NAMaSTE1 in April 2015 in Kathmandu Valley, Nepal.

Figure SI18: Comparison of OOA3 to tracer aerosol and gas-phase species for NAMaSTE1in April 2015 in Kathmandu Valley, Nepal.