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S1. Model evaluation 

S1.1 Meteorology 

The meteorological dataset used in the model evaluation includes hourly observations of near ground air temperature (T) and 

wind speed and direction at 10 meters above the ground (WS and WD, respectively) at 21 sites using the land surface 

observational data UK's Met Office Integrated Data Archive System (MIDAS) (Met Office, 2006). The statistical analysis was 

performed using the R-Openair package (Carslaw and Ropkins, 2012) and statistical scores that include the mean bias (MB), 

the normalized mean bias (NMB), and the Pearson correlation coefficient (r). Table S1 lists the average statistical performance 

of modelled temperature and wind speed across UK. 

 

Table S1. Average statistics for modelled temperature and wind speed performance, from May to August 2015, across the 

UK. The units of MB are the same as the observations.  

Parameter MB NMB 

(%) 

r No sites 

T (°C) 0.4 7 0.8 21 

WS (m s−1) -3.7 -39 0.4 6 

 

 

The model represents well the observed near-surface air temperature and diurnal variability over the UK, as shown in Fig. S2, 

with correlation values ranging between 0.9 and 0.5 across the selected sites. The model is biased positively in most of the 

assessed sites. The largest warm bias (MB = 3.7°C) is obtained at Boxworth Cambridgeshire, and the cold biases (MB = -

2.3 °C) is obtained at Holsome Devon. The values of MB in the temperature over the UK are consistent with that reported by 

Mar et al. (2016) in the June-July-August 2006 evaluation of WRF-Chem over Europe, where cold bias mostly concentrates 

over Northern Ireland and the North and the southwest UK. The simulation gives an average NMB of 7% for the period 

between May and August. 
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Figure S1. Comparison of the mean diurnal variation in temperature from May to August 2015 on selected sites in the UK. 

 

Wind speed predictions exhibited inferior statistical performance. The average correlation coefficient is 0.4, with the lowest 

values showing no geographical preference. In particular, the model tends to predict moderate wind speed more frequently and 

fails to reproduce the highest observed wind speed values. Furthermore, the model is biased negatively in the majority of the 

sites with both the lowest biases (MB = -5.3 ms−1) and the highest biases (MB = +0.9 ms−1) obtained for the southwest. The 

MB values are closer to those reported by Zhang et al. (2013) in the model validation of WRF/Chem-MADRID and 

WRF/Polyphemus over Europe where wind speed is under-predicted at many sites in the UK (with MBs of −4 to −0.8 m s−1). 

The simulation gives an average NMB of -39% for the period between May and August, which is in line with values reported 

in other application of the WRF-Chem model e.g., Gao et al. (2018) and Tao et al. (2020).  

Comparison of modelled and observed wind speed direction. Fig. S2 shows that the sites are predominately positive bias (bias 

shown in polar coordinates) ranging between 3 and 23.7° North. The model does a better job simulating winds from south, 

southwest and southeast. The spread in the wind direction tends to be narrower across land sites in the midlands, such as 

Cirencester, Dagenham and Wilford Hill, when compared to those sites that are closer to the coast, e.g., Sibsey. The figure 

also shows that positive biases in wind speed tend to predominate during southerly, easterly, and westerly winds at most 

stations. In contrast, negative biases in wind speed are mostly associated with northerly winds. Hence, enhancement in 

horizontal advection of O3 and precursors during anticyclonic weather is expected in our simulations. 
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Figure S2. Bias between modelled and observed wind direction and speed, from May to August 2015, at six Met-office sites 

in the UK. Colors denote whether wind speed tend to be positively or negatively biased with respect to observations. Mean 

wind speed and direction bias are included as numerical values. 

 

S1.2 Chemistry  

Hourly surface O3 measurements were taken from the European Monitoring and Evaluation Programme (EMEP) 

(http://www.nilu.no/projects/ccc/) from April to August 2015 at available sites in the UK, Ireland, France, The Netherlands, 

Switzerland, Denmark, Austria, and Germany. Surface measurements of NO and NO2 were also taken for the same stations 

when available. Table S2. Sumarises the statistical performance.  

 

Table S2. Statistics of hourly NO, NO2 and O3 calculated between May and August 2015. MB is given in ppbv.  

Parameter MB NMB (%) r No sites 

NO (ppbv) -0.4 -39 0.3 15 

NO2 (ppbv) 0.3 19 0.3 16 

O3 (ppbv) -3.7 6 0.6 52 

  

 

Fig. S3 shows that the observed night-time mixing ratios typically remain above zero. In contrast, the modelled NO reach zero 

most of the time. The model struggles to capture the timing in diurnal NO peaks, with NO mixing ratios increasing earlier than 

observed. Negative NO biases at night may be attributed to errors in the reported night time NO observations due to high NO 

detection limits of the equipment relative to the real concentration levels at the site (Tørseth et al., 2012). On the other hand, 

the early peaks in daytime NO may be due to uncertainties in the emission inventory, particularly the diurnal pattern applied 

http://www.nilu.no/projects/ccc/
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to the emissions. Fig. S3 further shows that even though NO2 diurnal variability is well captured at some sites, mixing ratios 

can be largely overestimated. As discussed in the main manuscript, positive bias in NO2, particularly at night, are expected in 

our simulations due to the omission of heterogeneous chemistry. An additional source of bias can be related to how the 

chemical mechanism represents the NOx chemical cycles. A comparison of different chemical mechanisms reported in Knote 

et al. (2014) shows large overestimations of NOx by the MOZART-4 mechanism and strong suppression of OH and HO2 

radicals caused by an incorrect rate constant for the reaction between NH3 and OH.  

 

 

Figure S3. Mean diurnal variation in observed (red) and modelled (blue) NO and NO2 mixing ratios at Wicken Fen and 

Charlton Mackrell. The shaded areas represent the variability between the different days, showing the 25th and 75th percentiles. 
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Figure S4. Mean bias MB ppbv (a) and correlation coefficient r (b) calculated from hourly measurements at each site. 

 

Fig. S4 show that the modelled O3 negative biases is up to -15 ppbv and positive MB of up to and + 5 ppbv. Negative biases 

are mostly restricted to sites in the North, and West of the UK and the throughout the Alps. Mace Head, for instance, exhibits 

a negative MB of -4.6 ppbv. Due to its geographical location on the western fringe of the UK, this site is strongly influenced 

by the model boundary conditions. Hence, the underestimations are most likely caused by biases in the representation of 

background O3 entering the western fringe of the domain, particularly the O3 predictions in the model used for boundary 

conditions (MOZART-4).   

Fig. S5 shows that underestimations of O3 in Mace Head are greatest during July and August. In contrast, underestimations of 

O3 in sites such as Charlton Mackrell, Strathvaich, Weybourne, Auchencorth Moss and High Muffles, arise from the model 

having difficulties in capturing the diurnal changes in O3, and in particular day time concentrations during the summer months. 

Positive biases, on the other hand, are mostly observed in the east and southeast UK and north of Germany, with a few 

exceptions, see Fig. S5. Overestimated O3 concentrations at Bush Estate, Narberth, Sibton and Wicken Fen, for instance, are 

due to the model struggling to reproduce the diurnal changes in O3, giving high O3 concentrations during night-time, Fig. S5. 

This is consistent with insufficient titration of O3 at night due to the underestimated NO discussed in the previous section. An 

additional source of model bias may be also caused by the limitation of comparing grid cell averages with point observations 

and by the choice of the grid cell representing each site 
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Figure S5. Diurnal variation in modelled and observed O3 mixing ratios at selected sites in UK and the Republic of Ireland. 

The shaded areas represent the variability between the different days, showing the 25th and 75th percentiles. 
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Two additional metrics were considered for O3, the MDA8 O3, and the AOT40. The MDA8 O3 was estimated by computing 

8-h moving mean of O3, for both modeled and observations at each site, and by selecting the hours when the MDA8 of 50 and 

60 ppbv was exceeded, following the current European and national air quality standards. The AOT40 was calculated by 

extracting the hours when O3 mixing ratios exceeded the hourly 40 ppbv thresholds between 08:00 and 20:00 CET. 

Fig. S6 shows the number of days with the MDA8 O3 above 50 ppbv at 15 EMEP monitoring sites from May to August over 

the UK and the Republic of Ireland. The UK’s Air quality strategy states that the MDA8 O3 should not exceed the threshold 

value of 50 ppbv more than ten times a year. The figure shows that most of the observed concentrations at the stations had less 

than ten days above 50 ppbv apart from those located in the East Anglia region, southwest and southeast England. The largest 

MDA8 O3 is seen at Wicken Fen, Yarner Wood, Weybourne, Sibton and Lullington Heath with 17, 15, 14, 12 and 12 days with 

MDA8 O3 values above 50 ppbv respectively. Fig. S5 further shows that the model does a fair job capturing the spatial 

distribution of the MDA8 O3 above 50 ppbv with the largest number of days concentrated in the East Anglia region and 

Southeast England. Nonetheless, the model tends to underestimate the number of days with MDA8 O3 above 50 ppbv, in 

particular over the East Anglia region, which is in line with earlier studies stressing the poor performance of many air quality 

models in simulating peak O3 concentrations in the UK (e.g., Archer-Nicholls et al., 2014; Francis et al., 2011).   

 

 

Figure S6. Spatial distribution of (a) observed and (b) modelled number of days with a daily MDA8 O3 above 50 ppbv at 

EMEP monitoring sites calculated from May to September. The difference between observed and modelled MDA8 

(observations – model) is also shown in (c). Please note the different scale used on (c). 

 

The spatial distribution of the number of days with MDA8 O3 above 60 ppbv is shown in Fig. S7. The European Union’s Air 

Quality Directive long term objective states that the MDA8 O3 should not exceed the threshold value of 60 ppbv within a 

calendar year. The observed values show that most of the sites have less than five days above 60 ppbv, except for some sites 

in the East of UK (East Anglia and the East Midlands). Similar to the MDA8 O3 above 50 ppbv metrics, the model tends to 

underestimate the number of days with MDA8 O3 above 60 ppbv in particular in the East Anglia Region. This is consistent 

with what has been reported for coarse simulations over a European domain for summertime using MOZART chemistry within 

WRF-Chem (Mar et al., 2016). Some overestimations of the metric, never higher than 5 days, are observed in the northeast 

UK.  
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Figure S7. Spatial distribution of (a) observed and (b) modelled number of days with a daily MDA8 O3 above 60 ppbv at 

EMEP monitoring sites calculated from May to September. The difference between observed and modelled MDA8 

(observations – model) is also shown in (c). 

 

The metric for vegetation exposure AOT40 is shown in Fig. S8. The UK’s Air Quality Directive states a target value of 9000 

ppb h (~18000 µg m-3 hours) averaged over five years. The highest observed values are seen in the east of England (with up 

to 6000 µg m-3 hours observed at Weybourne and Wicken Fen) and the southwest. The model captures most of the spatial 

distribution of the AOT40, with the largest values obtained for East Anglia. However, it tends to underestimate observations 

in the southeast (up to - 3000 µg m-3 hours), and overestimate them mostly in the southeast and Suffolk coast (e.g., St. Osyth 

up to 3000 µg m-3 hours). 

 

 

Figure S8. Spatial distribution of (a) observed and (b) modelled AOT40 (µg m-3 hour) calculated from May to September. 

The difference between observed and modelled AOT40 (observations – model) is also shown in (c). Please note the different 

scale used on (c). 
 

The model’s representation of organic NMVOCs may be an additional source of bias in the underestimation of O3. particularly 

during days during MDA8 O3 is above 50 and 60 ppbv. Figure S.9 shows that the model largely underestimates observations 

of isoprene particularly during the first days of July which were characterized by high O3 mixing ratios. The impacts of isoprene 

chemistry in O3 concentrations have been reported largely in the literature. For instance, in box modelling studies, Knote et al. 

(2014) show large variations in isoprene concentrations between different chemical mechanisms despite using identical 

biogenic emissions. Moreover, Zhao et al. (2016) demonstrate that more recent versions of the Model of Emissions of Gases 
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and Aerosols from Nature (MEGAN) better reproduce the observed isoprene than the publicly available version of the 

MEGAN model integrated into WRF-Chem 

 

 
Figure S9. Comparison between modelled (blue) and observed (red) hourly isoprene mixing ratios at Weybourne Atmospheric 

Observatory on July 2015, East Anglia UK. Observational data obtained from the Integrated Chemistry of Ozone in the 

Atmosphere (ICOZA) field campaign, North Norfolk Coast, UK, summer of 2015 (Crilley et al., 2015). 
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S2. Regional contributions 
 

 
Figure S10. Simulated contributions to the mean O3 mixing ratios in June 2015 over 12 receptors regions in the UK. Outer 

circle depicts the contributions from LB, UK, Eu super-region (Eu), and the NOS. The inner circle breaks down the contribution 

from the Eu super-region into four sub-regions: The Benelux (BNL), France (FRA), Germany (GER), and the rest of Europe 

(Rest_Eu). Note that the values correspond to the contributions from anthropogenic sources only, with the exception of the LB 

which includes O3 from stratospheric origin. 
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Figure S11. Simulated contributions to the mean O3 mixing ratios in July 2015 over 12 receptors regions in the UK. Outer 

circle depicts the contributions from LB, UK, Eu super-region (Eu), and the NOS. The inner circle breaks down the contribution 

from the Eu super-region into four sub-regions: The Benelux (BNL), France (FRA), Germany (GER), and the rest of Europe 

(Rest_Eu). Note that the values correspond to the contributions from anthropogenic sources only, with the exception of the LB 

which includes O3 from stratospheric origin. 
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Figure S12. Simulated contributions to the mean O3 mixing ratios in August 2015 over 12 receptors regions in the UK. Outer 

circle depicts the contributions from LB, UK, Eu super-region (Eu), and the NOS. The inner circle breaks down the contribution 

from the Eu super-region into four sub-regions: The Benelux (BNL), France (FRA), Germany (GER), and the rest of Europe 

(Rest_Eu). Note that the values correspond to the contributions from anthropogenic sources only, with the exception of the LB 

which includes O3 from stratospheric origin. 
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