
Journal of Cleaner Production 397 (2023) 136598

Available online 22 February 2023
0959-6526/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The impact of digitalization on energy intensity in manufacturing sectors – 
A panel data analysis for Europe 

Marcel Matthess , Stefanie Kunkel , Melissa Fiona Dachrodt , Grischa Beier * 

Digitalization and Sustainability Transformations, Research Institute for Sustainability (RIFS) - Helmholtz Centre Potsdam, Berliner Straße 130, 14467, Potsdam, 
Germany   

A R T I C L E  I N F O   

Handling Editor: Kathleen Aviso  

Keywords: 
Industry 4.0 
Energy intensity 
Manufacturing 
Digitalization 
Industrial robots 

A B S T R A C T   

Digitalization of industrial production, also known as Industry 4.0, may have profound environmental impacts, 
raising both hopes and fears with regards to the environmental friendliness of manufacturing. We investigate the 
relationship between Industry 4.0 and manufacturing energy intensity using panel data covering 15 countries 
and 8 manufacturing sectors or clusters for the years 2012–2020, providing insights for three different variables 
related to Industry 4.0. Firstly, we find a significant negative association (− 0.059 in the preferred specification) 
between robot density and energy intensity. Secondly, we find a significant positive association (+0.025 in the 
preferred specification) between digital capital intensity and energy intensity. Lastly, the relationship between 
the share of companies employing ICT specialists and energy intensity is insignificant in our data sample. We 
thus highlight the potentially varying effects of Industry 4.0 on manufacturing energy intensity, encouraging 
further investigations to provide a more nuanced view of the environmental impacts of digital technology uti-
lization in industry.   

1. Introduction 

A high environmental burden is associated with industrial produc-
tion. The manufacturing sector is a significant energy consumer (IEA, 
2020b) and emits a large portion of greenhouse gases (Climate Watch, 
2021), while also being related to various other forms of environmental 
degradation. As manufacturing – and the industrial sector more broadly 
– undergoes changes and more profound revolutions, it is inevitable that 
this will impact the environmental friendliness of industrial production 
as well (Beier et al., 2022a). 

At the same time, hopes have risen of digital technologies to trans-
form manufacturing industries in many ways, especially since the dawn 
of Industry 4.0 a decade ago. However, many effects remain uncertain 
and risks regarding environmental sustainability should not be over-
looked (Beier et al., 2020). There are different ways in which digitali-
zation may impact industrial energy intensity, defined as energy use per 
value added (Lange et al., 2020). For instance, various studies highlight 
the energy use of digital technologies in the midst of the proliferation of 
various digital technologies and increasing interconnectedness (Jones, 
2018). However, other studies argue that digitalization may decrease 
energy intensity due to mechanisms influencing energy efficiency of 

production (GeSI, 2020). In recent years, scientific scrutiny of the rela-
tionship between digitalization and environmental sustainability has 
notably increased. For instance, Han et al. (2016) investigate the effect 
of information and communication technologies (ICT) on energy con-
sumption in China. Similarly, Dehghan Shabani and Shahnazi (2019) 
conduct a panel analysis regarding the relationship between digitaliza-
tion, greenhouse gas (GHG) emissions and other factors for Iranian 
economic sectors. 

Notwithstanding the increased public and scientific interest in this 
field, the majority of empirical studies have investigated the effects of 
digitalization on energy intensity and related impacts on different 
geographic scales, but few have researched these effects for different 
economic activities and sectors. For instance, national impacts of digital 
technologies on energy intensity or energy consumption have been 
investigated for the cases of China (Wang et al., 2019) and South Africa 
(Atsu et al., 2021). In addition, regional differences have been investi-
gated both nationally (Ren et al., 2021; Sun and Kim, 2021) and inter-
nationally (Sadorsky, 2012). Among the studies researching the impacts 
of digitalization on energy consumption for specific economic activities, 
few have focused on manufacturing sectors explicitly (Bernstein and 
Madlener, 2010). Studies tend to model the effects of Industry 4.0 using 
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single variables or proxies representing well-established digital in-
dicators which are however not very representative of the technological 
concept Industry 4.0, such as internet usage (Faisal et al., 2020). 
Although such studies provide valuable insights regarding long-term 
trends of past decades, they are arguably less suitable to extrapolate 
findings for the concrete technological concept Industry 4.0. 

In summary, it becomes apparent that several studies exist in the 
literature investigating the effects of a specific class of technologies on 
variables such as emissions or economic growth. The few existing 
studies that focus on the manufacturing sector tend to model the effects 
of Industry 4.0 using single variables or proxies representing well- 
established digital indicators (such as national ICT usage or internet 
coverage) which are however not very representative of the techno-
logical concept Industry 4.0. To our knowledge, our study is the first of 
its kind investigating the effects of Industry 4.0 (operationalized by 
three variables specific for this technological concept) on manufacturing 
energy intensity covering multiple manufacturing sectors and countries. 

Specifically, we address the aforementioned research gaps by 
investigating the relationship between Industry 4.0 and manufacturing 
energy intensity for 8 manufacturing sectors (or clusters) of 15 European 
countries, analyzing data from 2012 to 2020. Likewise, we widen the 
view on the impacts of Industry 4.0 by incorporating three related 
variables, namely robot density, digital capital intensity, and the share 
of companies employing ICT specialists. The results of our regression 
analysis suggest that these variables may have varying effects on energy 
intensity, emphasizing the need to understand the heterogeneous im-
pacts of technologies involved in Industry 4.0 as well as potential 
interactions. 

The structure of the remaining paper is as follows: Section 2 explains 
the analytical methods, variables, models and data sources used for this 
study, while Section 3 provides an overview the relevant theory and 
reviews related literature. In Section 4 the results of the analysis are 
reported that are subsequently discussed in Section 5. Supplementary 
information is provided in Appendices A-C. 

2. Methods and data sources 

2.1. Variable selection and data sources 

Table 1 provides an overview of selected variables, their definitions 
and data sources. Energy intensity is our dependent variable. The data is 
sourced from Eurostat’s energy balances data. Energy data represents 

final energy consumption of industrial sectors, including all energy 
sources, and is measured in Terajoule (TJ). To construct the variable of 
energy intensity, energy consumption is divided by the respective sec-
tors’ gross value added (GVA) in constant 2015 USD (PPP). Likewise, 
GVA data is sourced from Eurostat. 

Among the three variables related to Industry 4.0, robot density 
represents the first independent variable of interest. Robot density is 
calculated as the ratio of the stock of industrial robots per 1000 em-
ployees. Robot stocks are sourced from the International Federation of 
Robotics (IFR). Employment data is sourced from Eurostat’s National 
Accounts data and is based on the total employment domestic concept. 

The second independent variable related to Industry 4.0 in our model 
is digital capital intensity. To construct digital capital intensity, digital 
capital is divided by GVA. It is measured as gross-fixed capital formation 
in constant 2015 USD (PPP) divided by GVA in constant 2015 USD 
(PPP). Digital capital data is sourced from Eurostat’s National Accounts 
database on non-financial assets. Unlike other studies such as (Schulte 
et al., 2016), we focus specifically on intangible digital capital to exclude 
tangible capital which may capture similar aspects that are already 
included in the robot density variable. There exist different attempts to 
capture digital capital using national accounts data. To overcome data 
limitations for one country in our sample (Germany), we used the EU 
KLEMS database for digital capital data. Both Eurostat and EU KLEMS 
have similar approaches measuring digital capital and could thus be 
used in conjunction without issues. 

Our third independent variable relating to Industry 4.0 is digital 
skills. Digital skills data is sourced from Eurostat’s Digital Economy and 
Society data and is defined as the share of companies employing ICT 
specialists. ICT specialists are defined as persons who have the ability to 
develop, operate and maintain ICT systems and for whom ICTs consti-
tute the main part of their job (OECD, 2004). With this variable, we aim 
to capture the human component of Industry 4.0. Regarding the ratio-
nale to include this variable, to fully assess the state of industrial digi-
talization, other studies have highlighted the importance to incorporate 
the “digital-related human capital embedded in production” (Calvino 
et al., 2018). 

Concerning further variables of interest, we include research and 
development (R&D) intensity in our model. R&D data is sourced from 
Eurostat. It is measured as GFCF of R&D divided by GVA. Moreover, we 
include trade intensity as a further independent variable. Trade data has 
also been sourced from Eurostat. It is calculated as the sum of the value 
of exports and imports, adjusted by constant 2015 exchange rates in 
USD, and then divided by GVA. Furthermore, we include energy prices 
as an independent variable. Energy price data is sourced from the In-
ternational Energy Agency’s (IEA) Energy Prices and Taxes (IEA, 2020a) 
database. Energy prices represent industries’ energy end-use price as an 
index (base year = 2015). Thus, it measures relative changes from the 
base year. Lastly, for the calculation of purchasing power parities (PPP) 
in USD, we used data from the Penn World Table (PWT) 10.0. PWT PPPs 
are based on output prices, which are argued to be suitable for the 
analysis of industrial sectors since they intend to measure the production 
possibilities of an economy (Feenstra et al., 2015). 

Combining these data sources inherently involves issues of harmo-
nization, for instance concerning the definition and clustering of 
manufacturing industries. In total, our sample includes data from 2012 
to 2020, 8 manufacturing sectors (clusters), and 15 countries, resulting 
in 1044 observations. For an overview of the sector definitions and the 
countries included please see Appendices A and B. 

2.2. Empirical model 

Following the description of data sources included, our empirical 
model consists of the dependent variable energy intensity (EI) and six 
independent variables, namely: robot density (ROBOT), digital capital 
intensity (DIGCAP), digital skills (SKILLS), R&D intensity (R&D), trade 
intensity (TRADE), and energy prices (EP). In its basic form, the model 

Table 1 
Variable definitions and data sources.  

Variable Symbol Definition Unit Data sources 

Energy 
intensity 

EI Final energy 
consumption 
divided by GVA 

TJ/GVA (Million, 
2015 USD, PPP) 

Eurostat 

Robot 
density 

ROBOT Industrial robot 
stock divided by 
employees 

Industrial robots/ 
1000 workers 

IFR 
Industrial 
Robots 
Report 

Digital 
capital 
intensity 

DIGCAP Digital capital 
GFCF divided by 
GVA 

Digital capital 
GFCF/GVA 
(Million, 2015 
USD, PPP) 

Eurostat, EU 
KLEMS 

Digital 
skills 

SKILLS Share of 
companies 
employing ICT 
specialists 

Percentage (%) Eurostat 

R&D 
intensity 

R&D R&D GFCF 
divided by GVA 

R&D GFCF/GVA 
(Million, 2015 
USD, PPP) 

Eurostat 

Trade 
intensity 

TRADE Sum of imports 
and exports 
divided by GVA 

Trade (XR)/GVA 
(Million, 2015 
USD, PPP) 

Eurostat 

Energy 
prices 

EP Energy end-use 
prices 

Index (2015 =
100) 

IEA  
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can be formulated as: 

EIit =αROBOTβ1
it + DIGCAPβ2

it + SKILLSβ3
it + R&Dβ4

it + TRADEβ5
it + EPβ6

it ε
(Eq. 1)  

where i represents the manufacturing sector(s), t represents the year, α 
represents the constant term, β represent the parameters to be estimated, 
and ε represents the error term. Eq. (1) is modified to take the natural 
logarithm of both sides of the equation, with the exception of variables 
SKILLS and EP, because these variables are already measured as per-
centages. We thus get the following equation: 

lnEIit = αi + β1lnROBOTit + β2lnDIGCAPit + β3SKILLSit + β4lnR&Dit

+ β5lnTRADEit + β6EPit + εit

(Eq. 2)  

where αi are individual (i.e. country-sector) specific effects. 
Given the nature of our study, we employ panel estimation tech-

niques, namely the fixed-effects estimator. Before estimating the effects 
of the included variables on energy intensity, we ensure the suitability of 
our model by testing for (i.a.) multicollinearity, serial correlation, cross- 
sectional dependence, heteroskedasticity, and unit roots. To test for 
serial correlation, we conduct the Durbin-Watson test and the Breusch- 
Godfrey test (BREUSCH, 1978) which indicate serial correlation. To test 
for cross-sectional dependence, we conduct the Pesaran CD test 
(Pesaran, 2021) which indicates cross-sectional dependence. Given the 
existence of cross-sectional dependence, second-generation unit root 
tests are necessary. The cross-sectionally augmented Dickey-Fuller 
(CADF) test (Pesaran, 2007) indicates no unit roots. 

3. Related literature 

Our study is related to different strands of literature which we will 
briefly summarize in the following subsections. Firstly, we discuss the 
broader impact of digital technologies on industrial production, namely 
productivity, growth, employment and income in industry. Secondly, we 
turn to the drivers of energy intensity in industry. Lastly, we assemble 
studies that investigate the link between digital technologies and energy 
intensity in industry. 

3.1. Impacts of digital technologies on industrial production 

The impacts of digital technologies on productivity and growth of 
industry is intensively researched in the literature. Studies often report a 
positive association between digital technologies and growth of national 
economies. For instance, positive correlations between digital technol-
ogies and GDP growth have been found in a number of studies (Farhadi 
et al., 2012; Irawan, 2014; Qiang et al., 2004; Vu, 2011). There seem to 
be declining returns to digital technology penetration (Qiang et al., 
2004; Vu, 2011), i.e., the higher the level of digital technology use, the 
lower the additional benefit of a one unit increase of digital technology 
use. On the firm level, digital technology use generally tends to increase 
productivity, e.g., in developing economies (Banga and te Velde, 2018) 
or in young firms (Jin and McElheran, 2017). 

Regarding employment and income in the economy, digitalization 
tends to polarize the job market. Middle-skilled occupations are rather 
substituted by ICT, low- and high-skilled occupations show positive 
correlations in terms of demand and wages (Goos et al., 2014) for 
instance because high-skilled occupations become more productive 
through the use of digital technologies and low-skilled service jobs are 
non-automatable and complementary to these digitally-enabled 
occupations. 

The impact of digital technologies on the labor market is assessed 
differently in the literature. It is widely undisputed that digitalization 
will make certain manual tasks obsolete, automation may also reduce 
repetitive tasks, reduce working hours and therefore enable workers to 

share productivity gains (Edwards and Ramirez, 2016; Krzywdzinski, 
2017). While early studies suggesting an imminent mass technological 
unemployment (Frey and Osborne, 2017) have been questioned with 
findings that paint a much more nuanced picture (Fu et al., 2021; 
Shuttleworth et al., 2022). Some scholars argue that jobs comprise 
multiple elements, of which not all can be automated (Autor, 2015). 
Therefore, domains with on average higher skill profiles are less prone to 
expected job losses compared to domains with lower skill profiles (Beier 
et al., 2022b). However, other scholars find, that the technological 
progress boosted the labor market, while the substitution effect of 
employment was greater than the creation effect (Su et al., 2022). 

Due to the complex nature of studying the effects of digitalization on 
industrial employment, a broad variety of potentially influencing factors 
have to be taken into account. Some studies emphasize that employees 
can participate in shaping the way in which new tools and work pro-
cesses are embodied into their daily work routines (Hammershøj, 2019; 
Helming et al., 2019). But the impact of digitalization also depends on 
contextual factors such as countries’ social protection mechanisms, ed-
ucation policies, or the structure of the workforce (Grigoli et al., 2020; 
OECD, 2019). 

In one Mexican study, labor demand was increasing despite growing 
automation in jobs with a low and very low risk of automation, but 
demographic factors were also identified as relevant, as the direction of 
labor demand was found to be inverse to the characteristics of gender, 
age, and education (Ramos et al., 2022). In an Asian context, Focacci 
(2021) compared the effects of increasing automation in China and 
Korea and concluded that robots did not always increase unemployment 
growth. 

In summary, digitalization should not be regarded as an automatic 
job destroyer, but rather as a process which incorporates a complex 
interplay of different social and technological factors which transform 
business processes and job profiles. 

3.2. Energy intensity of industrial production and its drivers 

Energy intensity of industrial production has various drivers, two 
important of which are structural and technological change. Firstly, 
technological factors determine energy intensity (Huang et al., 2017; 
Voigt et al., 2014). Using panel data of 30 Chinese provinces between 
2000 and 2013, Huang et al. (2017) state that indigenous R&D 
(expenditure and personnel) in China contributed significantly to 
declining energy intensity. Foreign direct investment (FDI) leading to 
technology spillovers also played a role. Secondly, Voigt et al. (2014) 
analyze energy intensity developments between 1995 and 2007 in 40 
countries where the importance of technological change in energy in-
tensity reduction is also highlighted but where structural change, i.e. a 
change in the distribution of economic activities, had a greater impact in 
several economies (Japan, the United States, Australia, Taiwan, Mexico 
and Brazil). Still, they highlight the key role of technological advance-
ments especially in countries with lower energy efficient economies 
(Voigt et al., 2014). 

Moreover, “green innovation” in terms of directed technological 
change towards more environmentally friendly technologies seems to be 
particularly effective in reducing energy intensity. Analyzing 14 indus-
trial sectors in 17 OECD countries over 20 years (1975–2005), Wurlod 
and Noailly (2018) detect a 0.03% reduction in energy intensity asso-
ciated with a 1% increase in green patenting. 

Ye et al. (2020) focus on the question of how countries’ collective 
technological progress affect each country’s energy intensity and sug-
gest that raising the global technological frontier and raising countries’ 
position in the global value chain reduce energy intensity. 

Analyzing the drivers of GHG emissions in the Chinese 
manufacturing industry between 2000 and 2015, Shi et al. (2019)un-
derline the relationship between energy intensity and GHG emissions 
and highlight the need for technology-induced efficiency improvements 
in carbon intensive sectors. Moreover, Lin and Chen (2020) emphasize 

M. Matthess et al.                                                                                                                                                                                                                               



Journal of Cleaner Production 397 (2023) 136598

4

the importance of a variety of factors including transport infrastructure, 
economic growth, technological progress and energy prices regarding 
energy efficiency of the Chinese manufacturing industry. Investigating 
the energy consumption of European industries, Del Pablo-Romero et al. 
(2019) come to the more general conclusion that energy use patterns 
vary between industry sectors and hence efficiency measures should be 
targeted at specific sectors instead of the overall industry. Furthermore 
Yang and Shi (2018) investigate the relationship between intangible 
capital (e.g. R&D, organizational capital) in 40 economies between 1995 
and 2007 and find a diminishing effect of intangible capital on reducing 
energy intensity with increasing income level. 

3.3. Impacts of digital technologies on environmental sustainability and 
energy consumption 

The relationship between digitalization and energy intensity is 
disputed, i. e. both positive and negative associations are described. In 
the following, we make the distinction between studies according to 
their focus on manufacturing sectors specifically (latter part of the 
subchapter) and all other studies (first part). 

3.3.1. Non-manufacturing specific studies 
Regarding non-manufacturing specific studies, several studies 

analyze ICT’s impact on environmental sustainability across countries. 
Higón et al. (2017) analyze whether there are any threshold effects of 

ICT on CO2 emissions depending on the level of ICT development in a 
country. Using a panel dataset of 142 economies from 1995 to 2010 they 
find that ICT contributes to CO2 emission reduction above a certain level 
of ICT development. 

Chimbo (2020) conducts a regression analysis on 21 transitional 
economies between 1994 and 2014 interested in how internet use affect 
electricity consumption and report a positive relationship. However, 
while contributing to an increase in electricity consumption, Haseeb 
et al. (2019) report that ICT (as measured by internet users and mobile 
cellular subscriptions) had also contributed to mitigating CO2 emissions 
in some countries (Brazil, Russia). They analyzed the effect of ICT on 
CO2 emissions in BRICS countries between 1994 and 2014. In line with 
Higón et al. (2017), they confirm that environmental quality decreases 
with an increase in the ICT indicators for countries like India, China, and 
South Africa. 

Yan et al. (2018) use World Development Indicators and OECD 
patent data to investigate the link between energy productivity and ICT 
innovation in 50 economies between 1995 and 2013. They find a sig-
nificant positive relationship between both indicators. As a reason why 
energy consumption in several fields increases despite efficiency in-
creases they note the possibility of rebound effects. 

3.3.2. Studies investigating manufacturing sectors 
Regarding manufacturing specific studies, Schulte et al. (2016) use 

panel data from OECD countries and find that ICT is associated with a 
significant reduction in total energy demand, which, however, depends 
on the type of energy. Analyzing 8 EU countries between 1991 and 2005, 
Bernstein and Madlener (2010) conclude for their data that ICT diffusion 
tends to enhance electricity efficiency in production. 

Zhou et al. (2018) scrutinize the impact of ICT on Chinese energy 
intensity changes from 2002 to 2012. Their results indicate that while 
production structure had an energy intensity decreasing effects, ICT 
contributed to a 4.54% increase in energy intensity. However, ICT input 
in sectors had an energy intensity decreasing effect, i.e., while ICT in-
dustry itself increases overall energy intensity, ICT input in other sectors 
can be conducive to reducing these sectors’ energy intensity. Effects 
seem to be stronger in the more technology-intensive sectors. 

Zhou et al. (2019) focus on the carbon emissions of the ICT sector. 
Using input output modelling for the Chinese case, they point to the 
induction of emissions through carbon intensive inputs in the ICT sector, 
especially intermediate inputs from non-ICT sectors such as the 

electricity and basic material sectors. They call for supply chain wide 
carbon management strategies. 

Using a STIRPAT modelling approach and various regression tech-
niques to analyze relationships between robot data and energy intensity, 
Liu et al. (2021) conclude that industrial robot use contributed to 
decreasing energy intensity in Chinese industry sectors. 

Modelling the relationship between ICT investment and energy use 
through the calculation of partial elasticities of substitution in 30 sectors 
in South Korea and Japan over a time span of almost 30 years, Khayyat 
et al. (2016) find that ICT capital can generally substitute energy (and 
labor) demand, but that the size of the substitution effect determines the 
development of the overall development of energy use. 

4. Results 

In this section we will present the results of our analysis based on our 
empirical model consisting of the dependent variable energy intensity 
(EI) and six independent variables (robot density (ROBOT), digital 
capital intensity (DIGCAP), digital skills (SKILLS), R&D intensity (R&D), 
trade intensity (TRADE), and energy prices (EP)) as described in Section 
2. In subsection 4.1. The descriptive results are presented, while sub-
section 4.2 focusses on the baseline regression results of the analysis. 

4.1. Descriptive results 

We present our descriptive findings in Table 2 and Figs. 1–4. 
Overall, we see a decline in the energy intensity of the manufacturing 

sectors included in our sample from 2012, followed by a marginal in-
crease in until 2020. Energy intensity varies greatly between 
manufacturing sectors and clusters. Notably, the increase in recent in-
tensity of overall manufacturing can largely be attributed to the energy- 
demanding manufacturing of basic metals (Fig. 1, “C24”). 

Looking at the three main variables of interest related to Industry 
4.0, we also find varying trends for our overall sample. Firstly, robot 
density nearly doubled between 2012 and 2020 (Fig. 2). Secondly, 
digital capital intensity also increased significantly, but more so in 
recent years (Fig. 3). Thirdly, and in contrast to the other variables, 
digital skills, representing the share of companies employing ICT spe-
cialists, decreased slightly between 2012 and 2020 (Fig. 4). 

To proceed with the analysis, a few observations were dropped as 
outliers based on Cook’s distance (1027 as opposed to 1044 observations 
of our original sample). 

4.2. Baseline results 

Our baseline results are presented in Table 3 and include four 
different specifications. Specification (1) shows the results with only the 
three digitalization variables included (robot density, digital skills, 
digital capital intensity) using the individual fixed-effects estimator. 
Specification (2) uses the pooled OLS estimator including all six inde-
pendent variables. Specification (3) shows the results using the indi-
vidual random-effects estimator including all six independent variables. 
Specification (4) is our preferred specification and shows the results 
using the individual fixed-effects estimator including all six independent 
variables. As can be seen, the results between specifications are robust 

Table 2 
Descriptive statistics.  

Variable N Mean St. Dev. Min Max 

Energy intensity 1044 8.4 10.7 0.5 115.3 
Robot density 1044 9.1 16.3 0.01 124.1 
Digital skills 1044 24.5 10.1 3.0 60.3 
Digital capital intensity 1044 0.02 0.02 0.000 0.3 
R&D intensity 1044 0.05 0.1 0.000 0.3 
Trade intensity 1044 2.0 1.4 0.2 11.1 
Energy prices 1044 102.3 7.3 83.4 128.6  
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concerning the effect of the majority of variables, but there are some 
differences regarding the effect of some variables. 

Robot density has a significant negative coefficient in all specifica-
tions, ranging from − 0.092 to − 0.059. Thus, in our preferred specifi-
cation, a 1% increase in robot density reduces the energy intensity of 

manufacturing sectors by 0.059%. The impact of digital skills on energy 
intensity is only significant and negative in specification (2), but negli-
gible and insignificant in all other specifications. Moreover, digital 
capital intensity has a positive coefficient in all specifications where the 
variable passes the 5% significance test. In specification (4), a 1% in-
crease in digital capital intensity leads to a 0.025% increase of energy 
intensity. 

With regards to further control variables, we find mixed results 
concerning their impact on energy intensity of manufacturing sectors. 
R&D intensity is the second variable with inconclusive results between 
specifications. Yet, given the greater suitability of the fixed-effects 
estimator as opposed to pooled OLS for our sample, specification (4) 
shows that a 1% increase in R&D intensity is associated with a 0.054% 
increase in energy intensity. Furthermore, trade intensity is significant, 
positive and substantial in all specifications. In specification (4) a 1% 
increase in trade intensity is associated with a 0.239% increase in energy 

Fig. 1. Mean energy intensity per sector (TJ per million GVA (2015 USD PPP)) 
over time. 

Fig. 2. Overall mean robot density (industrial robots per 1000 workers (total 
employment)) and energy intensity (TJ per million GVA (2015 USD PPP)) 
over time. 

Fig. 3. Overall mean digital capital intensity (million $ digital capital per 
million $ GVA in 2015 USD (PPP)) and energy intensity (TJ per million GVA 
(2015 USD PPP)) over time. 

Fig. 4. Overall mean digital skills (share of companies employing ICT spe-
cialists) and energy intensity (TJ per million GVA (2015 USD PPP)) over time. 

Table 3 
Baseline regression results – Energy intensity as dependent variable.   

(1) (2) (3) (4) 

Robot density 
(lnROBOT) 

− 0.092*** − 0.086*** − 0.063*** − 0.059*** 
(0.005) (0.027) (0.010) (0.008)     

Digital skills 
(SKILLS) 

0.002 − 0.022*** 0.0004 0.001 
(0.001) (0.004) (0.001) (0.001)     

Digital capital 
intensity 
(lnDIGCAP) 

0.040*** − 0.018 0.025** 0.025** 
(0.010) (0.042) (0.012) (0.012)     

R&D intensity 
(lnR&D)  

− 0.218*** 0.047*** 0.054***  
(0.034) (0.011) (0.009)     

Trade intensity 
(lnTRADE)  

0.469*** 0.236*** 0.239***  
(0.062) (0.026) (0.026)     

Energy prices 
(EP)  

0.005 0.003*** 0.004***  
(0.005) (0.001) (0.001)     

Constant  0.461 1.359***   
(0.542) (0.140)   

Observations 1027 1027 1027 1027 
R2 0.101 0.181 0.198 0.224 
Adjusted R2 − 0.015 0.176 0.193 0.121 
F Statistic 34.099*** 

(df = 3; 909) 
37.457*** 
(df = 6; 
1020) 

254.208*** 43.647*** 
(df = 6; 906) 

Note: ***, **, * denote statistical significance at the 1%, 5%, 10% level; standard 
errors in parentheses. 
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intensity. Lastly, energy prices have a positive coefficient of small size in 
(0.004) in specification (4). 

To further evaluate our results, we have run several robustness 
checks, which can be found in Appendix C. 

5. Discussion 

5.1. Digitalization and energy intensity of manufacturing sectors 

Looking at the individual variables related to digitalization, we find 
that robot density has a negative coefficient, thus contributing to a 
decrease in energy intensity. This effect appears to be even more pro-
nounced in highly digitalized sectors which include (i.a.) manufacturing 
of electronics, machinery, vehicles and others. Our results are in line 
with those of (Liu et al., 2021) considering the negative coefficient of 
robot density. It has to be considered that robot distribution among 
manufacturing sectors is very skewed, meaning that the majority of in-
dustrial robots are installed in a handful of sectors such as electronics, 
automotive, metal and machinery (IFR, 2021). Nevertheless, a pre-
liminary conclusion could be that robotization embodies the general 
notion that Industry 4.0 may drive efficiency and productivity (Beier 
et al., 2020), as shown by Graetz and Michaels (2018) for the case of 
labor productivity. Furthermore, approaches for considerable efficiency 
improvements in the use of large robot fleets were identified in large 
European research projects during the time period we have analyzed 
(Riazi et al., 2016). However, due to the low degree of robot density in 
many countries and sectors, it has yet to be shown that robotization has 
large-scale effects on energy intensity. Notwithstanding, our results 
provide first insights for European manufacturing sectors in a largely 
under-investigated context. 

For the case of digital capital intensity, our results imply that this 
variable is associated with an increase in energy intensity, with largely 
consistent findings in our robustness checks. To our knowledge, our 
study is the first one to investigate purely digital capital when analyzing 
its relationship to energy intensity. Thus, we take a narrower approach 
than previous studies investigating the effects of the more encompassing 
information and communication technology (ICT) capital such as 
(Khayyat et al., 2016). Whereas Khayyat et al. (2016) find that ICT 
capital investment in South Korea and Japan is a substitute for industrial 
energy use, Schulte et al. (2016) highlight the overall negative associ-
ation between ICT capital and total energy demand in economic sectors 
of OECD countries, which however is not significant for electric energy 
demand specifically. Although we are hesitant to draw premature con-
clusions, our results allow for inferences which deserve further investi-
gation concerning digital capital. Related to digital capital, other studies 
have found substantial energy consumption of applications related to 
artificial intelligence (Strubell et al., 2019) and of data centers (Jones, 
2018). Such insights contribute to the plausibility of our findings. 
Similar to the previously mentioned studies, a further differentiation of 
energy sources may be one avenue worth investigating in the future. In 
conclusion, it appears logical that increases in digital capital do not 
automatically lead to energy intensity improvements, but instead need 
be to actively steered in order to accomplish efficiency gains. 

With the inclusion of the variable “digital skills” we integrated a 
human component when analyzing the impacts of digitalization. Our 
results indicate that digital skills either display coefficients of marginal 
magnitude or are not significantly associated with the energy intensity 
of manufacturing sectors. Given the novelty of this approach, it is 
difficult to compare our results to other studies. Undoubtedly, Industry 
4.0 is associated with a change in the skill requirements of employees 
(Beier et al., 2022b). However, we underscore the importance to not 
view this as a passive process but actively consider which digital skills 
should be fostered to improve environmental friendliness of production 
and how these can be better incorporated into (econometric) models. 
Employees shape the way (digital) tools are used and tasks are per-
formed (Hammershøj, 2019). Moving one step further, this raises the 

question of which digital skills may be most impactful with regards to 
their potential to influence energy intensity and, on a broader level, 
environmental sustainability of production. 

5.2. Impact of further control variables 

Our model also includes the variables R&D intensity, trade intensity 
and energy prices. Our results suggest a significant positive association 
between R&D intensity and energy intensity. This comes as a surprise as 
it contradicts both theory and previous empirical results. Whereas 
Schulte et al. (2016) and Karimu et al. (2017) find insignificant re-
lationships between R&D intensity and energy intensity or demand, Liu 
et al. (2021) find a negative association. In theory, R&D should be 
associated with (i.a.) technological process and thus with energy effi-
ciency. Different aspects could have contributed to our results. As Kar-
imu et al. (2017) state, it may require a longer period of time to see the 
efficiency increasing effects of R&D. 

Secondly, our analysis shows a significant positive impact of trade 
intensity on energy intensity. Although other studies paint a mixed 
picture, many studies report similar results, with trade being positively 
associated with (i.e. increasing) energy intensity (Ajayi and Reiner, 
2020; Zheng et al., 2011). Further aspects could be of relevance in the 
context of Industry 4.0, bearing in mind potential interactions between 
digitalization and trade. As Zhang (2013) holds, trade could facilitate 
spillover of information and technology. Reversely, digitalization may 
impact trade, the geography of production (Butollo, 2021) and global 
supply chains (Ebinger and Omondi, 2020). Hence, it could be fruitful to 
further investigate the relationship between trade, energy intensity and 
digitalization as has been shown recently (Zhang et al., 2022). 

Lastly, we also included energy prices as a control variable and found 
a significant but negligible positive association between energy prices 
and energy intensity. Intuitively, rising prices should foster efficiency 
improvements and thus be negatively associated with energy intensity, 
which is also what most previous studies find (Ajayi and Reiner, 2020; 
Karimu et al., 2017). Our study is subject to limitations in this regard, 
due to the fact that energy prices were only available for the overall 
manufacturing sector of each country. 

6. Conclusions, limitations and outlook 

6.1. Conclusions 

On a general level, our findings imply that Industry 4.0 may have 
mixed impacts on energy intensity of manufacturing sectors, high-
lighting the heterogeneity of the impacts of technologies and their in-
teractions. More specifically, we find that an increase in robot density is 
associated with a decrease in energy intensity. To our knowledge, this is 
the first study investigating this link outside China, broadening our in-
sights concerning the effects of automation. Furthermore, digital capital 
intensity is positively associated with energy intensity in most of our 
robustness tests. This may hint at differing effects of varying types of 
digital capital, comparing our results with previous studies’ results on 
the overarching domain of ICT capital (Schulte et al., 2016). It also 
underlines assumed environmental burdens associated with digitaliza-
tion such as increased energy consumption. Moreover, digital skills have 
an insignificant association with manufacturing energy intensity in most 
of our tested specifications. 

Many conceptual papers on Industry 4.0 emphasized the need to use 
the digital transformation of industry as a window of opportunity in 
order to shape and accelerate the urgently needed transformation to-
wards sustainable production patterns. However, so far little is known 
about the actual effects Industry 4.0 has had in that regard. We 
emphasize the importance to deepen our knowledge concerning the 
effects of Industry 4.0 on environmental sustainability and energy in-
tensity specifically. We are convinced that our study is a first step in the 
direction of assessing the impacts of Industry 4.0 on energy intensity in a 
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more detailed manner, encouraging endeavors in both areas of data 
provision and industry-level analysis. Although it may take a significant 
amount of time for clear trends of the impact of technology use to 
manifest, we face the challenge of anticipating and seeing these impacts 
as soon as possible in order to foster environmentally friendly industrial 
production and not risk long-term risks of technological dependencies in 
this regard. This is also crucial considering the limited time to reach net 
zero emissions, a goal many countries are committed to. We hope to 
stimulate further discussions and ultimately additional valuable 
insights. 

6.2. Limitations 

Our study comes with some limitations. Firstly, our methodological 
choices do not allow for causal inferences. Secondly, we faced well- 
known issues of combining different data sources that impacted (i.a.) 
the categorization of manufacturing sectors and sector clusters. In gen-
eral, the limited amount of available sources gathering data for different 
manufacturing sectors impacted our study. As mentioned previously, 
this was (e.g.) the case for data on energy prices. Likewise, limitations of 
data on robot installation and density have been mentioned previously 
(Jurkat et al., 2022). For instance, methodological assumptions (e.g. 
one-hoss shay depreciation of robot stocks) as well as data structure (e.g. 
heterogeneity of robot installations between countries and 
manufacturing sectors) have to be considered. Moreover, although we 
sought to incorporate the core aspects of Industry 4.0 as highlighted by 
seminal studies with our variable choices, it requires further studies to 
investigate the suitability of related proxy variables, patent data being 
one example in the field of R&D related to digitalization. Similarly, we 
opted for a relatively short time span (2012–2020). 

6.3. Outlook 

Although this is in line with the inception of Industry 4.0, further 
data may provide additional insights in the coming years. In addition to 
this, new insights can also be gained by looking at further parameters to 
map the state of industrial digitalization on the one hand and the 
ecological consequences of its impact on the other. Future studies should 
also address a broader geographical focus allowing for a global 
perspective on the consequences of digitalization in industry. 
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