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Quantification of Gas Flaring from

Satellite Imagery: A Comparison of

Two Methods for SLSTR and BIROS

Imagery. J. Imaging 2023, 9, 152.

https://doi.org/10.3390/jimaging

9080152

Academic Editor: Pierre Gouton

Received: 5 May 2023

Revised: 18 July 2023

Accepted: 24 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Quantification of Gas Flaring from Satellite Imagery: A
Comparison of Two Methods for SLSTR and BIROS Imagery
Alexandre Caseiro 1,* and Agnieszka Soszyńska 2
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Abstract: Gas flaring is an environmental problem of local, regional and global concerns. Gas
flares emit pollutants and greenhouse gases, yet knowledge about the source strength is limited
due to disparate reporting approaches in different geographies, whenever and wherever those are
considered. Remote sensing has bridged the gap but uncertainties remain. There are numerous
sensors which provide measurements over flaring-active regions in wavelengths that are suitable for
the observation of gas flares and the retrieval of flaring activity. However, their use for operational
monitoring has been limited. Besides several potential sensors, there are also different approaches to
conduct the retrievals. In the current paper, we compare two retrieval approaches over an offshore
flaring area during an extended period of time. Our results show that retrieved activities are consistent
between methods although discrepancies may originate for individual flares at the highly temporal
scale, which are traced back to the variable nature of flaring. The presented results are helpful for
the estimation of flaring activity from different sources and will be useful in a future integration of
diverse sensors and methodologies into a single monitoring scheme.

Keywords: gas flaring; SLSTR; BIROS

1. Introduction

During the extraction and refinement of crude oil and condensates, some natural gas
is withdrawn from the ground [1]. This natural gas can be used for energy production or
injected back into the ground, but most often, it is routinely disposed of by flaring, according
to the World Bank (https://www.worldbank.org/en/programs/gasflaringreduction/gas-
flaring-explained; accessed on 23 July 2023). At the level of a single flare, up to the totality of
the natural gas generated as a side product of crude oil extraction can be flared, according to
the World Bank (See: https://www.worldbank.org/en/programs/gasflaringreduction#7;
accessed on 23 July 2023). Gas flaring occurs globally, the countries flaring the most gas are
Russia, Iraq, and Iran (ibidem).

Flaring of natural gas is a polluting process harmful for the natural environment
(e.g., [2–4]) as well as human health (e.g., [5–7]), with up to 360 premature deaths estimated
in the US [8]. Flaring also contributes to global greenhouse gas (GHG) emissions (e.g., [9]).
In 2020, gas flaring activities caused CO2 emissions estimated at 377 million tonnes (https:
//www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data; accessed
on 23 July 2023). Further emissions include species relevant for both climate and air
quality [10], e.g., nitrogen dioxide [11,12] (estimated global emission of 3.6 Tg yr−1 [13])
volatile organic compounds [14–17], and particulates [18–23].

Besides contributing to climate change with the emission of carbon dioxide, gas flaring
also emits black carbon, in the range of 73–210 Gg yr−1 [24,25], a particle active in the
radiative transfer of the Earth’s atmosphere [26,27], being particularly relevant in the Arctic
through local albedo reductions [28–31]. Gas flaring also emits methane (estimated global
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emission of 5.6 Tg yr−1) [13,32]. Methane is originally the prominent component of the gas
to be flared and its destruction, the combustion efficiency of the flaring process, may not be
as efficient as previously assumed [33,34].

The amounts of flared gas are very high; global estimates of flaring activity are in
the order of 129 billion (BE) cubic metres a year [25] or even higher (e.g., [35]). Therefore,
several international initiatives, which aim to reduce (and later completely eliminate)
routine gas flaring, have come to life. Examples of these initiatives are Global Gas Flaring
Reduction (GGFR) partnership, or Zero Routine Flaring by 2030 (e.g., [36]). Other initiatives
of interest for gas flaring are, e.g., the global methane pledge and the Paris Agreement [37].
Increasing the monitoring of single flares globally is particularly important because of the
skewed distribution of activity among flares, with a few flares being responsible for a large
part of the emissions [38–40]. However, the actual amount of flared gas and emissions
is very difficult to quantify globally in a consistent manner over time and space using
ground data due to differences in reporting regulations and conditions among and within
countries. Additionally, ground data collection is dependent on local conditions: political
stability favours continuous reporting whereas wars and conflicts can lead to losses in
accuracy or in information altogether, or metering strategies are ill-defined and poorly
enforced [41,42]. At the flaring site level, the amount of flared gas, and therefore the success
of reduction initiatives, depends on a number of factors, such as the phase of the oil well
life (exploration, development and operation) [43], technical optimizations (e.g., [44,45]),
local legislation and policy (e.g., [36,42,46]) or the presence of infrastructure to bring the
non-flared gas to markets (e.g., [1]) and can only be measured by an accurate reporting
of the amount of flared gas; therefore, it requires a globally applicable method that can
provide reliable and reproducible results.

Remote sensing techniques can be useful to consistently monitor gas flaring at the
global scale, quantify amounts of flared gas and estimate emissions to verify policy com-
pliance [47]. In the last years, several methods for the detection of flaring have been
published. Initially, the visible range of the spectrum was used to detect the presence of a
flare [48–53], but researchers later took advantage of the strong signal a high-temperature
subpixel phenomenon leaves in the short and midwave infrared (SWIR and MWIR,
respectively) [54–56], making a more selective and automated detection of gas flares pos-
sible [38,57–70]. Techniques on the detection of gas flares were recently reviewed by
Anejionu [71] and Faruolo et al. [35].

Besides detection, flaring activity can be characterised by analysing satellite imagery
in the SWIR and/or MWIR ranges. There are many sensors which can be used for the
parametrisation of gas flaring, which goes beyond detection in that it quantifies aspects
of the flaring process. Parametrisation is here understood as either the derivation of flare
characteristics, such as, e.g., its radiative power or temperature, which can subsequently
be used to derive the flaring activity, or the direct computation of the flaring activity from
remotely sensed physical quantities. Until now, data from the following sensors have
been used to characterise gas flaring: the Sea and Land Surface Temperature Radiometer
(SLSTR) [64], the Visible Infrared Imaging Radiometer Suite (VIIRS) (e.g., [38,65,72,73]),
the Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g., [57,61,63]), and the
Bispectral Infrared Optical System (BIROS) [74].

Methods used to characterise flared gas can be grouped into two approaches. The first
and most common uses a statistical model fitted between a satellite product and reference,
ground-based, flaring activity data [25,38,61]. The second approach aims to describe the
combustion of a flare in a physical model [73,75]. Both these approaches can provide
reliable results, although their fundamentals differ strongly.

An example of the first approach was initially proposed by Elvidge et al. [60], who
used a combination of VIIRS-retrieved flaring area and temperature, agglomerated at a
national level (47 countries and two US states) and related it to the reported flaring activity.
The method was later further developed to integrate the flare radiance spreading over
several pixels, and refactored for the SLSTR sensor by Caseiro et al. [64].



J. Imaging 2023, 9, 152 3 of 20

A method of the second approach was developed by Soszynska [75] for BIROS data.
The method considered flame parameters (heating value of the gas, temperature of combus-
tion and its efficiency, proportion of energy radiated and emissivity) and sensing parameters
(atmospheric transmission, proportion of energy radiated in the bandwidth of interest and
ground sampling area), combining them with the radiance measured by the sensor to
derive the fuel mass flow. The weakness of the model came from many assumptions made
to provide values for the parameters. The parameters of the model were also strongly
variable and therefore could differ between geographic locations.

Flaring activity based on remote sensing estimates is uncertain [76–78], as are emissions
estimates, due to uncertain emission factors [79–83], on the one hand, and to limitations
from both the ground-based data used for the fitting (e.g., [32,77,84]), in the case of the
calibration-based approach, and the sensors (e.g., [85]), in the cases of the calibration-
based and the physico-chemical-based approaches, on the other hand. The former include
geographic and temporal biases: the reporting processes, the gas characteristics and the
combustion conditions, for example, may have a strong local dimension and limited
applicability, become outdated, be inconsistent or highly uncertain. The latter comprises
sensor characteristics relevant when observing subpixel phenomena, such as the ground
sampling distance, the point-spread function, the spatial and spectral resolutions, the
integration time or the dynamic range. For example, although VIIRS data have been
used to derive parameters of gas flaring by the World Bank, researchers assessing the
dataset and the algorithm stated that small flares are often omitted, temporal sampling
is not sufficient for some cases, and due to large viewing angles, distortions may lead
to inaccuracies in deriving flaring parameters (e.g., [85]). The uncertainty in the global
flaring activity estimates is reflected in the few trend analyses published to this date.
Liu et al. [40] found a decreasing trend in offshore flaring activity, yet not suitable to reach
the 2030 zero flaring target, whereas Lu et al. [86] found an increasing trend at the global
scale. Zhang et al. [43] found a decreasing post-2008 trend in the Gulf of Mexico linked to
an increased gas utilization. Brandt [76] found no significant trend between 2012 and 2018
in Brazil, Canada, Denmark, Mexico, Netherlands, Nigeria, Norway, USA and the UK. In
their review, Faruolo et al. [35] also found steady flared volumes at the global (onshore and
offshore) scale.

Since there is no sensor (or constellation of sensors) able to provide high revisit
times with high spatial resolution, as of 2023, using data from different sensors becomes
a necessity. Given the urgent need for accurate reporting and reduced uncertainties, as
well as the variety of sensors and methods available, in the present work, we analyse the
possibility of data fusion of two differing approaches. To achieve this, we investigate the
agreement of the methodologies provided by [64] (calibration-based) and [75] (physico-
chemical-based) over an offshore region and a period of time of approximately one year.
By analysing offshore flares, we limit the influence of variables related to land cover and
therefore minimize the uncertainty originating in the background radiation.

A more detailed description of both methods can be found in Section 2, together
with a description of the study area and the satellite products used. Section 3 details the
results: an exploratory analysis of the SLSTR-based and the BIROS-based methods (in
Sections 3.1 and 3.2, respectively) is followed by the comparison. The comparison is first
conducted for the distributions over the region of interest and the whole study period
of the retrieved signals (Section 3.3.1), then the analysis focuses on totals at individual
flaring locations (Section 3.3.2) and ends with detections coincident in time and space
(Section 3.3.3). The results are discussed in Section 4. Section 5 presents our conclusions.

2. Materials and Methods
2.1. Satellite Products

The flaring activity and characterisation was conducted over the region of interest
(ROI) using Level-1b data from the SLSTR instrument on-board the Copernicus Sentinel-3B
satellite, and radiance images from the BIROS satellite of the German Aerospace Center.
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In our study, we compared two approaches for a common study area and period of
time. We used Sentinel-3 SLSTR data for the calibration-based method and BIROS data for
the physico-chemical-based method. The study period comprised approximately 9 months
between November 2018 and September 2019.

2.2. Study Area

The ROI was an offshore area of the Persian Gulf between Qatar and Iran. In this
region, a geodatabase of gas flares was created, based on the photointerpretation of high-
resolution imagery from the LANDSAT-8 panchromatic band (15 m GSD). The database
contained 34 gas flares with their exact geolocation. The flaring locations are shown in
Figure 1.

Figure 1. The region of interest, with the location of the gas flares in the geodatabase [75].

The selected ROI allowed the study of a relatively large number of gas flares within
a small area (thus minimizing the variation in the gas composition) under cloud-free
detections and against the sea as background, which is more homogeneous in terms of
surface temperature than other environments. The latter reason minimized the influence of
surface phenomena other than flaring and maximized the influence of the factors related
to the sensors and the methodologies in the comparison. As such, the focus was on the
differences derived from the instrumentation and the methodologies.

The location of offshore gas flares was known a priori when applying the physico-
chemical-based method to BIROS scenes. For the calibration-based method, a detection step
was performed on SLSTR scenes (revisit frequency of once per night) prior to conducting
the activity determination. The detection was based on an elevated signal in the 1.6 µm
band at nighttime, given cloud-free conditions in that pixel at its surroundings. See
Elvidge et al. [38] and Caseiro et al. [64] for more detail on the gas flare detection.

2.3. Calibration-Based Method

The calibration-based method was an adaption of a method developed by Elvidge et al. [38],
who used a statistical model to determine flaring activity. The model assumed that despite
differences in efficiency of gas combustion and variations in gas heating value, there should



J. Imaging 2023, 9, 152 5 of 20

be a reasonably consistent relationship between reported flared gas volumes and estimated
radiative power.

The independent variable of the linear function introduced by Elvidge et al. [38] was
given by a modified Stefan–Boltzmann equation. An exponent was applied to the flame
area term in order to account for the nonlinear relationship between the power radiated and
the flared gas volume in large flares. The flame temperature was obtained by adjusting the
sum of two Planck curves (one for the background and one for the hot source) to nighttime
radiances observed by VIIRS (visible, SWIR and MWIR bands, 6 bands in total) in the VIIRS
NightFire (VNF) algorithm. The flame area was also an output of the dual Planck curve
fitting and was subsequently adjusted for possible side-viewing effects before applying
the modified Stefan–Boltzmann equation. The dependent variable of the model was the
volume of flared gas. Reference data used for fitting the model consisted of 47 reported
upstream flares (plus venting, assumed as negligible) at a country-level and state-level
reporting for two US states (Texas and North Dakota). The limitations of the approach have
recently been reviewed by Schade [77].

Caseiro et al. [64] adapted the methodology to the SLSTR sensor, with modifications
to the detection of gas flares and the retrieval of the flame’s temperature and area. The
main modifications pertinent to the determination of gas flaring activity was a clustering
of adjacent hot pixels and the use of thermal infrared (TIR) bands, besides the SWIR and
MWIR bands, for conducting the dual Planck curve fitting. The latter was considered
in version 4 of VNF [67]. A year-long comparison between the original [38] and the
adapted [64] versions at the global scale can be found in Caseiro et al. [25].

The total number of Level-1b products analysed was 238, with sensing dates between
21 November 2018 and 6 September 2019. A set of 30,540 hot spots were derived in the
SLSTR data processing, using the method described in Caseiro et al. [64] and Caseiro
et al. [25] (cloud-free hot pixel and more than 3 cloud-free pixels in its 8 contiguous
background pixels), of which 842 were located within a buffer of ±0.025 degrees in latitude
and longitude from an offshore flaring location listed in the geodatabase (see Section 2.2).

2.4. Physico-Chemical-Based Method

In the physico-chemical-based method, the total instantaneous energy radiated during
the combustion was assumed to be given by the total energy contained in the mass of fuel
burned scaled by the combustion efficiency (χ(T)) and the proportion of energy radiated
(ρ(T)) (Equation (1)).

Ecombustion = ṁ × LHV × χ(T)× ρ(T) (1)

Before reaching a spaceborne sensor, the radiation is attenuated by the atmosphere.
The attenuation is a function of the wavelength: τ(λ). Sensors such as the SLSTR, VIIRS
or BIROS register the radiation in specific bandwidths and only capture the amount of
energy emitted within those given spectral ranges. The proportion of the energy radiated
within a spectral range is a function of the wavelength, the bandwidth and the temperature:
ψ(λ, ∆λ, T). Hence, the radiance measured at the sensor in a given band, in units of W sr−1

m−2 µm−1 can then be written as follows:

Lsensor = ṁ × LHV × χ(T)× ρ(T)
4π sr

× τ(λ)× ψ(λ, ∆λ, T)
Apixel ∆λ S

(2)

The left-hand term of Equation (2) is the measured quantity, whereas the flow mass
(ṁ) is the quantity of interest. The first quotient refers to parameters which depend on the
flame, and the second quotient refers to the sensing parameters. Equation (2) can be solved
for the mass flow of the flared gas (ṁ).

The application of this activity quantification approach in the present work made use
of the MWIR channel, being therefore not limited to nighttime scenes. Since the method
did not include an estimation of the flaring temperature, four distinct flaring temperatures
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(1200, 1600, 1800 and 2226 K) were assumed. In the present work, too low activity values
(below 657 m3 h−1) were not considered.

In the present study, the physico-chemical-based method was applied to scenes ac-
quired by BIROS. BIROS is a sensor installed on a small satellite, within the FireBIRD
mission of the German Aerospace Center (DLR). A detailed description of the mission
can be found in Fischer et al. [87]. BIROS was developed specifically for fire analysis, so
the spectral bands and acquisition modes were adjusted for that purpose.BIROS acquires
imagery in two spectral bands: midwave infrared (3.4–4.2 µm) and long-wave infrared
(8.6–9.4 µm). Both bands acquire scenes in normal temperature and of hotspots (such as gas
flares) using a hot-area mode, which uses a shorter integration time. BIROS is a pushbroom
sensor with staggered arrays. Using the staggered arrays, as well as shortening the time gap
between the subsequent integration instances, allows the spatial resolution to be 4 times
higher than the ground sampling distance related to the physical size of a detector unit. The
increased spatial resolution of an image product is therefore 180 m (at the nadir). BIROS
has a revisit time of 5 days. The results from the physico-chemical-based method were
obtained from 25 cloud-free BIROS scenes sensed from 22 July 2018 to 14 November 2019.

3. Results
3.1. Detections and Flaring Activity with SLSTR

The processing of SLSTR imagery output the flaring temperature and area, from
which the activity was derived (see Section 2.3). The application of the temperature filter
described in Caseiro et al. [64] (the derived flaring temperature must be above 500 K and
below 5000 K) resulted in 728 flaring detections, each of which associated with the closest
of the 34 offshore gas flares from the geodatabase. Eight flaring locations were not detected
at all by the SLSTR-based method, while nine were detected eight times or less. Therefore,
over half of the flaring locations were detected less than once per month on average.

Figure 2 shows the histogram of the 728 retrieved flaring temperatures. The distri-
bution shows a mode between 1600 and 1800 K. There is also a smaller mode at much
cooler temperatures, around 500 K. Since we only investigated detections at confirmed
offshore flaring locations, these low-temperature detections could not be attributed to other
hot sources, although it is possible that the very low values were artefacts of the retrieval
(e.g., flares with a very small flaring area).

Figure 2. Histogram of the SLSTR-based retrieved flaring temperatures.

Figure 3 shows the temperature distributions at individual flaring locations. Most
temperature distributions had their mode in the range 1600–1700 K, with an interquartile
range spanning a few hundred K (260 K on average, up to 533 K). Among the 15 flares
which were detected more than once a month on average, the variability was substantial,
with a standard deviation between 306 and 527 K. The flaring temperature varied with
the combustion efficiency, with the maximum efficiency corresponding to the adiabatic
flame temperature (2226 K for methane). The number of SLSTR-based retrievals above the
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maximum burning temperature of methane (2226 K) were only seven, below 1% of the total,
showing the physical consistency of the methodology. The variability observed could thus
be traced back to a variability in the combustion efficiency, which has been observed in
other studies [13,18,34,88]. Several factors affect the combustion efficiency of a flare, such
as ambient conditions (atmospheric temperature and pressure, wind), operating conditions
(air–fuel ratio in the burner, composition and mass flow of the gas) or possibly the design
of the infrastructure (stack diameter) [10,13,21,83,89].

Figure 3. Box-and-whisker (from left to right: minimum, 25th, 50th and 75th percentiles and maxi-
mum) plots of the SLSTR-based retrieved flaring temperatures for the individual flaring locations.
The vertical line at 1600 K represents the assumed flaring temperature for the BIROS determinations
used in this analysis.
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The average mass flow derived from the SLSTR-based detections was 2508 m3 h−1

(3817 kg h−1), with a standard deviation of 3096 m3 h−1 (4713 kg h−1). The variability
in the retrieved flaring temperature was propagated at the power of four to the radiative
power via the Stefan–Boltzmann equation. The variability was further propagated to the
computation of the instantaneous activity: the standard deviation among the 15 flares
which were detected more than once a month on average was in the range 341–5071 m3 h−1

(519–7718 kg h−1).

3.2. Flaring Activity with BIROS

Valid (ṁ over 657 m3 h−1, equalling 1000 kg h−1) BIROS-based determinations were
made at 33 offshore flaring locations listed in the geodatabase (see Section 2.2).

Figure 4 shows the activity determined from the BIROS-sensed MWIR data for the four
assumed flaring temperatures. The average (and median) instantaneous flaring activity
were 3826, 4269, 4734 and 5715 m3 h−1 (1734, 1951, 2108, 2603 m3 h−1) for the assumed
flaring temperatures of 1200, 1600, 1800 and 2226 K, respectively.

Figure 4. Box-and-whisker plots (from bottom to top: minimum, 25th, 50th and 75th percentiles and
maximum) of the determined flaring activity for the four different assumed flaring temperatures.

The maximum number of determinations per gas flare was 25 (GF ID 3), with eight lo-
cations detected eight times or less (less than once a month on average). Among the 24 flares
which were detected more than once a month on average, the variability was substantial:
the standard deviation varied between 1534 and 8107 m3 h−1.

3.3. Comparison of Flaring Activity

In this subsection, we compare the flaring activity retrieved by both methodologies.
First, we look at the regional, long-term activity, then we increment the spatial resolution of
the analysis and finally, we further refine it by also increasing the temporal resolution.

3.3.1. Bulk Comparison in Time and Space

Figure 5 shows a comparison between the histograms of the retrieved flaring activity
(728 detections for the SLSTR-based method and 530 determinations for the BIROS-based
one). The distributions from both methods compare well in bulk, exhibiting a similar
shape, but show different modes: around 750 m3 h−1 for the BIROS-based method, and
the following bin around 1250 m3 h−1, for the SLSTR-based method. It is important to
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note that 750 m3 h−1 is the lowest class in BIROS detections, since values below 657 m3 h−1

are masked as invalid. This discrepancy may evidence either a higher limit of detection
(omission of smaller flares) or a positive bias for the SLSTR-based method.

Since we did not have coincidental observations, we investigate in the following sub-
sections how the data derived from both methods at a same location compare (Section 3.3.2),
and how data obtained within a short interval of time at a same flaring location compare
(Section 3.3.3), in order to investigate the origin of the discrepancy.

Figure 5. Histogram of the retrieved flaring activities. For the BIROS-based activity values, the as-
sumed flaring temperature was 1600 K. For ease of visualization purposes, activity values were
truncated at 20,000 m3 h−1. There were 495 BIROS-based determinations with activity below
20,000 m3 h−1 and 35 with activity above. There were 714 SLSTR-based determinations with activity
below 20,000 m3 h−1 and 14 with activity above.

3.3.2. Bulk Comparison in Time, Detailed in Space

Figure 6 shows the average activity over the study period for individual flaring sites,
provided there were more than eight SLSTR-detections and eight BIROS-determinations
(approximately one detection per month by each sensor, representing 14 flaring sites in
total). Some points show agreement between methodologies and gather around the 1:1 line,
but most data points with higher gas flow values are estimated as higher in BIROS than
in SLSTR. Another striking feature is the high variability of the data for the same method,
as shown by the spread of the error bars which represent one standard deviation, and as
reported in Table 1 along with the interquartile range (IQR).

Indeed, the SLSTR-based data (15 flares with more than one detection per month on
average, i.e., at least eight in total) showed an IQR of 515–10,216 m3 h−1 and a relative
standard deviation in the range 0.4–1.6. The BIROS-based data (25 flares with more than
one detection per month in average, i.e., at least eight in total) were less variable in absolute
but relatively more variable than the SLSTR-based data: an IQR of 1857–6201 m3 h−1 and a
relative standard deviation in the range 0.9–2.1. As stated above (see Section 3.3.1, these
numbers also potentially show a higher limit of detection for the SLSTR-based method.
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Figure 6. Comparison of the flare-by-flare mean activity (m3 h−1). Only the 14 flaring locations with
more than 8 detections for both methods are included. The solid line represents a 1:1 relationship.
The error bars represent one standard deviation.

Most points representing the average gas flow calculated with one method lay within
the range of the average ± one standard deviation of the gas flow from the other method,
the exception being gas flares 7 and 28. For gas flare 7 (Figure 7), there were many more
observations from SLSTR data (93) than from BIROS data (23). In the case of gas flare 28,
the number of observations was similar (13 and 15 for SLSTR and BIROS, respectively), but
the spread of the calculated gas flow was very different in both methods. The distribution
of the number of observations by both methods was indeed very different (Figure 8); an
increased sampling rate could have lead to minimized differences.

This shows that a substantial part of the observed discrepancy may originate from the
variability within the samples, as can be further observed in Figure 9 (only the 12 flares
where the gas flow calculated with one method lay within the range of the average ± one
standard deviation of the gas flow from the other method are shown, flares 7 and 28 are
not shown) or summarized in Table 1. The observed variability highlights that besides a
potential higher limit of detection by the SLSTR-based method, the timing of the sampling
is of prime importance when monitoring gas flares.

Table 1 also reports the results (in terms of p-values) of the Wilcoxon–Mann–Whitney
U-test assessing whether the SLSTR-based and the BIROS-based samples originated from
the same population (the null hypothesis, H0). H0 (the populations are identical) was
rejected (p-values < 0.05) for 12 flaring sites and could not be rejected for the remaining 2.
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Figure 7. Box-and-whisker (from left to right: minimum, 25th, 50th and 75th percentiles and maxi-
mum) plots of the SLSTR-based and BIROS-based flaring activity (m3 h−1) at all the flaring locations.
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Figure 8. Histogram of the number of samples per flaring location for both methods.

Table 1. Summary of the flaring activity at the locations where there were more than 8 detections
by the SLSTR-based method and more than 8 determinations by the BIROS-based method. For
each method, the average volumetric flow (m3 h−1) is given, together with the sample standard
deviation (σ̂), the interquartile range (IQR) and the number of retrievals (n). For each flaring location,
a Wilcoxon–Mann–Whitney hypothesis test (U-test) was conducted to indicate whether the samples
(the BIROS- and SLSTR-derived flared volumes) originated from the same population. The p-value of
the test is given. The within-variability column indicates whether the average gas flow calculated
with one method lies within the range of the average ± one standard deviation of the gas flow from
the other method.

BIROS SLSTR U Within
Flare ID Mean σ̂ IQR n Mean σ̂ IQR n Test Variability

1 5176 6269 2538 24 1691 1067 643 39 1.3 × 10−9 TRUE
2 1828 895 983 22 4269 6690 1350 60 0.031 TRUE
3 10,035 7310 6418 25 2926 3976 954 13 1.4 × 10−5 TRUE
4 3463 3587 1699 22 4170 3846 2897 109 0.31 TRUE
5 8309 12,219 3531 22 2655 3325 959 33 4.2 × 10−5 TRUE
6 13,983 13,912 6032 22 3646 5962 1083 48 8.8 × 10−10 TRUE
7 16,104 8849 13,375 23 4579 3772 3315 93 2.1 × 10−10 FALSE
8 4350 8122 1401 14 5743 5402 6712 105 0.0042 TRUE

14 4273 6091 1532 23 1762 1766 347 19 9.7 × 10−5 TRUE
16 1166 449 622 15 2806 2409 2557 33 0.00086 TRUE
17 1572 1019 641 18 4408 6597 1843 30 0.014 TRUE
25 1103 275 496 21 2631 2093 1613 73 1.1 × 10−7 TRUE
28 1432 871 564 15 9579 7718 5993 13 4.8 × 10−5 FALSE
32 1186 426 741 16 1384 650 338 14 0.42 TRUE
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Figure 9. Time series at the 12 flaring locations where the number of observations by both sensors were larger than 8 and whose average instantaneous gas volume
flow determined by one methodology was within the average ± one standard deviation of the other. For gas flare 7 (Figure 7), there were many more observations
from SLSTR data (93) than from BIROS data (23). In the case of gas flare 28, the number of observations was similar (13 and 15 for SLSTR and BIROS, respectively),
but the spread of the calculated gas flow was very different in both methods. The distribution of the number of observations by both methods is indeed very
different (Figure 8); an increased sampling rate could have lead to minimized differences.



J. Imaging 2023, 9, 152 14 of 20

3.3.3. Near-Coincidental Activity

Each BIROS determination was associated with the SLSTR detections that occurred
for the same flaring location and within a time span of ±one day. The comparison of the
instantaneous mass flow from the resulting 110 pairs of near-coincidental observations are
plotted in Figure 10. A set of 34 near-coincidental observations were on the same day, while
76 had an SLSTR detection on the day before or the day after the BIROS determination. For
46 of the near-coincidental observations, the flaring activity between both methodologies
was within a factor of two, 17 of which were same-day observations. Figure 10 also
shows the SLSTR-based flaring temperature retrieved for each pair. It can be seen that the
discrepancy between the methodologies appears to be unrelated to the flare temperature.

Figure 10. Instantaneous flaring activity (m3 h−1) at single flaring locations for near-coincidental
(±1 day) overpasses.

4. Discussion

Gas flaring is a process harmful to the natural environment, and attempts to reduce
this process require a proper method of monitoring. In our research, we compared two
methods and two data sources that can be used for this purpose. For the first method, we
used data acquired by the SLSTR sensor. The SLSTR-based method has several advantages
over other methods published until now, among which the acknowledgement that sensors
typically blur the signal of a gas flare into several pixels according to their point-spread
function; consequently, we used a cluster-based approach. The SLSTR data can be acquired
daily, so the effects of the intermittency of the flares can be minimized.

On the other hand, the physico-chemical method using BIROS data provides a com-
pletely different approach: data are not acquired as often, but the higher spatial resolution
allows us to better resolve gas flares. The method is based on different assumptions than
the SLSTR-based one and the VIIRS-based method published by Elvidge et al. [90]. In the
future, a similar comparison between the method published by Elvidge et al. [90] and the
physico-chemical method would be interesting, especially since the physico-chemical-based
method can be used successfully with VIIRS data, as indicated in Soszynska [75].

In bulk terms, the long-term activity at the level of the ROI (Figure 5) shows some
degree of agreement, but the distribution of flaring activity hints towards a possible higher
limit of detection for the SLSTR-based method. A significant disparity in the detection
limit of one methodology against the other would lead to a decreased number of detections
or determinations by a methodology at flaring locations where the activity determined
by the other is low. Although some flaring locations exhibit a low number of SLSTR-
based detections, a low BIROS-based activity but a high BIROS number of determinations
(e.g., flaring locations 0, 22 or 30, Figure 7), other BIROS-based low-activity high-number
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flaring locations are coupled to higher SLSTR-based detections (e.g., flaring locations 16, 25
and 32). This also occurs the other way around, e.g., flaring location 29 shows a SLSTR-
based low-activity high-number flaring locations coupled to low-number BIROS-based
determinations, whereas flaring locations 1 and 14 show an SLSTR-based low-activity
high-number flaring locations coupled to high-number BIROS-based determinations. The
lack of a clear trend is an indication that the detection limit of one method does not differ
substantially from the detection limit of the other one.

At the level of individual flaring sites, the long-term agreement (Figure 6) is low. The
main question is whether this difference is due to an inherent varying and intermittent
nature of gas flaring or the consequence of artefacts for any of the retrievals or sensitivities
to the assumed parameters in the physico-chemical model (Equation (2)). The distribution
of the points in Figure 6 do not hint towards a possible higher limit of detection for the
SLSTR-based method being the main source of the discrepancy, since it would lead to the
points being located above the 1:1 line. A systematic high bias for the SLSTR-based method
could be the origin of the mode shift in Figure 5, but at the same time, a higher limit of
detection for the SLSTR-based method would favour a distribution of the points in Figure 6
above the 1:1 line. Therefore, Figure 6 shows that a possible higher limit of detection or
systematic bias by the SLSTR-based method gets diluted in the very high variability of
the signal itself. The BIROS-based method could also be subject to a systematic high bias,
originating, e.g., in the application of the minimum mass flow rate threshold. However,
the distribution of the retrieved mass flow rates (Figure 5), with the mode at lower values
for the BIROS-based determinations, do not support this hypothesis. A wrong assumption
about the flaring temperature would also lead to a systematic bias for the BIROS-based
determinations, but the agreement between the estimated temperature in SLSTR and the
assumed temperature in the physico-chemical-based method in Figure 3 does not support
that hypothesis.

The discrepancy observed in Figure 6 could stem from a sensitivity to the parame-
ters assumed in the physico-chemical model (Equation (2)), beyond the assumed flaring
temperature. The fuel heating value was assumed in our model to be that of methane,
but the flared fuel composition, and hence its calorific value, varies in reality [20]. Opera-
tional conditions, such as the provision of oxygen or the presence of wind interfere with
the combustion efficiency. Atmospheric conditions affect the flame’s emissivity and the
atmospheric transmittance. All these parameters are not stated in the calibration-based
method but are explicit in the physico-chemical model. The influence of their variations in
the discrepancy between methodologies becomes more evident with the discretization of
the analysis.

The time series at the fourteen flaring sites with more than eight determinations by
both sensors (see Figure 9) show that for some moments in time, the retrieved flaring
activity by both methodologies is consistent, while for some others, it is not. This is further
indication that the discrepancies in the long-term averages at singular flaring sites originate
from variations in the flaring process itself. Although the operational conditions and the
legal framing are very different, this finding is in agreement with the intermittence reported
by Wu et al. [69] at flaring sites in Texas. An increased sampling frequency, together with
a higher timeliness in the overpasses by both sensors, could provide more insight into
the question.

As shown above, the long-term activity average for single gas flaring locations is in
general consistent between methodologies, within the variability of both methodologies.
A further step in the present intercomparison was to analyse pairs of near-coincidental
(±1 day) activity retrievals for the single flaring locations. The comparison of the resulting
110 pairs showed that there were large, non-systematic, discrepancies, with only 46 showing
a flaring activity within a factor 2. The lack of a systematic nature of the bias further points
towards the relevance of sampling and highlights the intermittent and varying nature of
gas flaring.
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The high variability of the flaring activity at the single flare level found in the present
study, together with the skewed distribution of flaring combustion efficiencies and emis-
sions found in other studies [13,18,34,88], calls for an increment in flaring observation
frequency by merging data from different sensors and retrievals if the monitoring required
for the flaring and GHG emission reduction initiatives is to be implemented.

5. Conclusions

In the present paper, we compared two approaches for the retrieval of flaring activity
applied to two different sensors, SLSTR and BIROS. The main goal of the comparison was
to investigate convergences and discrepancies in order to derive valuable information for
future gas flaring monitoring.

The analysis presented here, which is, to the best of our knowledge, the first com-
parison of flaring activity retrievals in such detail (single detection for a single flaring
site) was limited to a particular region with a smooth background in order to focus on
the methodological aspects. Further work is needed to characterise how different sensors
and methodologies used to monitor gas flares compare throughout different environments.
The main weakness of the present study is the lack of coincidental observations from both
sensors. We approximated coincidental observations by applying a buffer of one day, but
even at that time resolution, the variability, as shown from the analysis from a single sensor,
may be of the same order of magnitude or larger than the variability between sensors.

We qualitatively showed that there was no indication of a strong discrepancy in terms
of detection limits between both methods. Our analysis showed that the agreement in
flaring activity between the methodologies decreased from the regional and long-term
scale towards the localized-in-space and near-coincidental-in-time scale. At those scales,
the timeliness of the sampling becomes very important. At a near-coincidental (±1 day)
time resolution, the variability in the activity retrieved from a single sensor was significant.
Thus, even at these offshore sites, the flaring intensity variability and intermittency may
be so large as to shadow most of the differences between the two remote sensing activity
retrieval methodologies.

Although these findings are a limitation in terms of a methodological comparison,
they highlight the necessity to increase the monitoring of flaring activity in terms of time
resolution. Although globally, the estimates from different sensors may be convergent and
the localized discrepancies identified and characterised [25], the use of flaring activity and
emissions in, e.g., atmospheric models which forecast air quality, such as the Copernicus
Atmosphere Monitoring Service, require detailed data in both space and time to avoid any
sampling bias.

We conclude that further research should focus on integrating the retrievals from
different instruments into a single monitoring system. The integration of several sensors
in a common effort to detect flaring and quantify its activity as well as to characterise
its emissions has the potential to increase detection opportunities and reduce uncertain-
ties. The expansion of the detection to daytime conditions [57,62,91,92] would also be of
considerable added value.
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