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A B S T R A C T   

Digitalisation in manufacturing (or “industry 4.0”) is expected to improve energy efficiency and thus reduce 
energy intensity in manufacturing, but studies show that it may also increase energy consumption. In this article, 
we investigate to what extent the degree of industry 4.0 is linked to energy consumption and energy intensity in 
ten Chinese manufacturing sectors between 2006 and 2019. We approximate the degree of industry 4.0 by 
combining data on a) patent intensity of industry 4.0-related technologies and b) industrial robot intensity. Our 
results indicate that there is no significant overall relationship between the degree of industry 4.0 and energy 
consumption or energy intensity, in contrast to some earlier studies in the Chinese context which find energy 
intensity reducing effects of digitalisation. We argue that industry 4.0 in China might have fewer energy related 
benefits than expected by politics and industry. Growth-inducing effects and outsourcing of energy-intensive 
manufacturing tasks, for instance, may counteract efficiency-related savings. To decarbonise manufacturing in 
line with China’s proclaimed objective of carbon neutrality by 2060, policy makers and industry should identify 
specific opportunities and take seriously risks of industry 4.0. The focus should be on reducing absolute energy 
consumption as opposed to energy intensity, which may disguise digital rebound effects; and on integrating 
renewable energies, particularly in the most energy-intensive sectors (metals, chemicals, non-metallic minerals).   

1. Introduction 

The sustainability-related effects of digitalisation in industry,1 or 
industry 4.0 (I4.0), receive increasing attention in research, industry and 
politics. I4.0 can be defined as the transformation of manufacturing 
organisations and human interactions within these organisations 
through digital technologies, with mutual dependencies between orga-
nisations, humans and technologies in manufacturing systems [1]. There 
are expectations by industry and policy makers that I4.0 will not only 
create economic opportunities, but also positively impact sustainability 
of industry, e.g., through the provision of real-time environmental data 
along supply chains [2–6]. China, being the largest manufacturer in the 
world with 30% of global manufacturing value added, increasingly 
frames I4.0 as a means to create economic growth while simultaneously 
helping to achieve energy saving goals, for instance, in the 14th 5-year--
plan (2021-2025), “Made in China 2025”, the “Internet +” action plan or 
in the white paper “Energy in China’s New Era” [7,8]. Despite 
government-promoted energy intensity reductions2, however, the Chi-
nese manufacturing sectors’ total energy consumption has increased in 
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past decades (as shown in Figs. 1 and 2). Given the industry sector’s 
crucial role for the country’s energy savings [9], the question arises how 
I4.0 will affect industrial energy consumption. 

Empirical analyses of the effect of digitalisation and industry 4.0 on 
energy consumption and intensity have shown mixed results [10]. 
Studies posit both energy-consuming and energy-saving effects of digi-
talisation [11–13] (see section 2). There are gaps in the literature, which 
further complicate the assessment of digitalisation’s effects. Many 
studies analyse the broader effects of digital technologies on energy 
consumption [14,15], but fewer do so in the Chinese context [16–19] 
and even fewer studies compare the heterogeneity of digital technolo-
gies’ impact across manufacturing sectors [20,21]. Moreover, there is 
little recognition of the concept of I4.0 in previous studies, and subse-
quently little diversity of manufacturing-specific proxies for measuring 

I4.0, as opposed to more widely used indicators of digitalisation, such as 
ICT capital, broadband coverage and mobile internet subscriptions (for a 
list of indicators, see Ref. [22]). In some studies in the context of China, 
authors oversimplify the concept of I4.0, for instance, by equating robot 
use with artificial intelligence (AI) use [23–25], leaving out the inno-
vation and knowledge dimension of technologies. Additionally, previous 
studies on robot use in China mainly frame econometric models around 
the efficiency and energy intensity related effects of digitalisation, 
thereby neglecting the aggregate energy consumption. All in all, it is 
remains unclear whether the proliferation of I4.0 is associated with 
higher or lower energy consumption and energy intensity in 
manufacturing. 

This study aims to provide an empirical perspective on the rela-
tionship between I4.0, energy intensity and energy consumption in 

Fig. 1. Energy consumption by manufacturing sector in China 2006-2019.  

Fig. 2. Energy intensity by manufacturing sector in China 2006-2019.  
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Chinese manufacturing sectors over time and investigate the expectation 
that I4.0 is associated with decreasing energy intensity and energy 
consumption in industry. We ask the following research question: How 
far is the degree of I4.0 linked to energy consumption and intensity in 
industry sectors? We address this question by conducting a panel data 
analysis of the degree of I4.0 and energy consumption and energy in-
tensity in ten industry sectors over a 14-year period (2006–2019). We 
construct a combined index of robot and I4.0 patent intensity as a proxy 
for the degree of I4.0 in manufacturing sectors. The robot data is sourced 
from the International Federation of Robotics and the patent data is 
sourced from the China National Intellectual Property Administration 
(CNIPA) via the European Patent Office’s PATSTAT database. It com-
prises patents in eight core technology fields of I4.0, namely, big data 
and analytics, robotics and autonomous systems, cloud computing, the 
internet of things, artificial intelligence (AI), 3D printing, digital security 
and, digital measuring tools and sensors. The technology fields were 
adapted from Martinelli et al. [26], and the definitions and IPC codes, 
which characterise patens, were adapted from the UK IP Office [27–30], 
Ardito et al. [31], Martinelli et al. [32] and the OECD [33]. 

Our study aims to extend the existing literature in several di-
mensions. Firstly, we extend the time frame and the granularity of 
previous studies by differentiating between ten manufacturing sectors in 
China between 2006 and 2019. Secondly, to face the lack of indicators 
and data for I4.0 we introduce a novel way of conceptualising I4.0 and 
operationalising its measurement by approximating I4.0 through robot 
intensity and patent intensity. Robot intensity is one indicator reflecting 
the tangible dimension of the concept of I4.0, i.e., it should be a proxy 
for the dimension of hardware equipment and automation of 
manufacturing. Patent intensity is one indicator reflecting the intangible 
dimension of I4.0, i.e., it should be a proxy for the dimension of 
knowledge, intellectual property and innovation regarding I4.0. Both 
indicators have been used before separately in similar studies, e.g., robot 
data to analyse AI, I4.0 and automation [20,34,35], and patent data in 
the context of energy intensity [36,37] and digitalisation [38,26]. To the 
best of our knowledge, however, we are the first to use sectorally 
attributed patent data in eight I4.0 technology fields as a proxy for I4.0 
and to combine robot and patent data to assess their joint impact of I4.0 
on energy indicators. Thirdly, we include both energy consumption and 
energy intensity in the econometric model to investigate differences in 
the effect of digitalisation on energy consumption and energy intensity 
and discuss the interaction between energy consumption, energy in-
tensity and I4.0 on the level of sectors in manufacturing in China. This 
allows us to reflect on the role of I4.0 for absolute energy consumption 
and rebound effects, as opposed to intensity/efficiency-focused accounts 
in previous studies. 

Understanding the nexus between energy and I4.0 in China could 
have significance not only for Chinese industry representatives and 
policy makers. The European Union and countries in other world regions 
are facing similar challenges in shaping I4.0 to promote the goals of 
sustainable development. For instance, the EU pursues a “green and 
digital transition” in industry [27], aiming to achieve both environ-
mental and digital innovation targets. Moreover, numerous industrial 
policy strategies in Asia and Africa draw similar links between envi-
ronmental sustainability and digitalisation in industry. However, it often 
remains unclear in these policy visions how digitalisation will translate 
into environmental benefits in the economy [2]. Thus, empirical evi-
dence of the environmental effects of digitalisation in industry, such as 
the relationship between I4.0 and energy in manufacturing sectors, 
could inform countries’ policy measures to steer the implementation and 
environmental effects of I4.0 towards the goals of sustainable 
development. 

2. Theory & evidence: impacts of digitalisation and industry 4.0 
on energy consumption and energy intensity 

Taking into account the broader literature on the effects of 

information and communication technology (ICT) on the environment 
of the past 25 years, digital technologies have been theorised to cause 
direct effects and indirect (including systemic) effects on the environ-
ment. Direct effects result from the resources and energy required in 
production, use and disposal/reuse of digital technologies [28]. Indirect 
effects arise, when digital technologies are used in other domains, such 
as agriculture or industry and affect environmental indicators in these 
domains. Systemic effects occur when digitalisation induces long term 
structural shifts in how and what is produced in the economy [29,30]. 
Furthermore, when viewed from an economic standpoint, the indirect 
effects of digitalisation in industry on the environment can be decom-
posed into a scale effect, a technique effect, and a structure effect [19, 
31]. For the case of energy, these effects can be defined as follows: 

• Scale effect is the effect of digital technologies on energy con-
sumption that occurs through their impact on growing the economy 
(e.g., sales of products and services; also called income effect, or final 
demand effect).  

• Technology effect is the effect of digital technologies on energy 
intensity in other sectors (also called technique effect). It is argued 
that innovation and technological progress have a decreasing effect 
on energy intensity, since they promote the development of more 
efficient technology (as a result of the innovation itself) and tech-
nological spillover into other areas, and thus lead to more energy- 
efficient production [33,39].  

• Structure effect is the effect of digital technologies on the size, 
composition and value added of sectors which can influence energy 
consumption and intensity in the economy. For instance, the intro-
duction of digital technologies in the automotive sector may shift the 
value added from manufacturing to the service sector, as value added 
grows stronger in the accompanying services (e.g., repair of board 
electronics) than in the manufacturing of the car [40]. This may 
affect energy consumption and intensity of the automobile sector. 

Empirical studies on the environmental impacts of digitalisation 
come to varying, or even opposite results [10,41]. Regarding energy 
consumption, for instance, Schulte et al. [13] conducting a 
multi-country OECD panel investigation find an overall negative rela-
tionship between ICT and energy consumption. The direct effect of using 
ICT and its indirect growth-accelerating effect (scale effect) increase 
energy demand whereas the technology effect and the structure effect 
reduce energy demand. Han et al. [19], analysing the impact of ICT on 
energy consumption in China, find that the net effect of ICT is initially 
negative (until 2014) and then becomes positive. The authors assume 
that the reason for this U-shaped effect is the industrial structure opti-
misation through ICT. The optimisation process of moving away from 
energy-intensive industries happened before 2014. The scale effect, 
including household income growth through ICT, direct energy con-
sumption of ICT as well as lower energy costs outweigh the savings of 
ICT after 2014 [19]. Applying a machine learning approach to firm level 
data of 25000 firms in Germany, Axenbeck et al. [42] find that ICT more 
frequently leads to an increase than a decrease in energy consumption in 
the observed firms. 

Regarding energy intensity, Zhou et al. [43] scrutinise the impact of 
ICT on Chinese energy intensity changes from 2002 to 2012 using a 
three-tier structural decomposition analysis. Their results indicate that 
ICT contributed to a 4.54% increase in energy intensity. However, ICT 
input in other sectors had an energy intensity decreasing effect. Effects 
seemed to be stronger in the service sectors and the more technology 
intensive sectors. For heavy manufacturing sectors and other 
energy-intensive sectors the effects were negligible. Wang et al. [44], on 
the other hand, find an energy intensity reducing effect of the use of 
industrial robots across 38 countries. They argue that increased pro-
ductivity, optimised factor structures, and technological innovation in 
production improve energy efficiency depending on the application field 
and country. They also find that after the introduction of the concept of 
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I4.0 in 2011 the negative impact of robots on energy intensity increased 
compared to before 2011, and thus conclude that I4.0 has an energy 
intensity decreasing effect. Lee et al. [45] similarly find a positive 
relationship between industrial robots the introduction of I4.0 and green 
technology innovation. Li et al. [20] equate industrial robot use with AI 
use, and find that AI use contributed to decreasing energy intensity in 
Chinese industry sectors by increasing output value and reducing energy 
consumption. They also demonstrate that efficiency gains due to AI vary 
across industries. The negative effect of AI on energy intensity is found 
to be most pronounced in technology-intensive sectors and its positive 
effect on output value (scale effect) greater in labour- and 
technology-intensive sectors than in capital intensive sectors. As is the 
case for energy consumption, several studies come to the conclusion, 
that there is a non-linear effect of digital technologies on environmental 
and energy intensity [10,20,42,46,47]. Initially, digital technologies are 
found to be associated with increasing energy intensity and later with 
decreasing energy intensity, as the reference variable (e.g., financial 
development, income, and technological development) increases. 

To conclude, several studies find an energy intensity reducing 
(technology) effect of digitalisation, analysing different indicators, such 
as ICT investment or industrial robot use. Some studies hint to growth- 
inducing effects and the non-linearity of digitalisation’s impact on en-
ergy, depending on other development indicators. Wang and Xu [10] 
reviewing 46 articles on the econometric analysis of environmental 
impacts of ICT conclude that the variation in results is due to differences 
in the underlying contexts, study periods, indicators and/or estimators. 
Zhang and Wei [41] alert to the omission of system level effects which 
have led to confounded results in previous studies. 

3. Methods 

3.1. Data 

Drawing from standard econometric textbooks and a recent review of 
econometric approaches to the analysis of environmental effects of ICT 
[10,48,49], in this analysis we choose an econometric panel data esti-
mation approach. We firstly construct a panel data set with a 
cross-sectional dimension (N = 10 sectors) and a time dimension (T = 14 
years). The dataset is balanced, as each panel member (sector) is 
observed every year, which results in 140 observations. An overview of 
the variables in the dataset can be found in Table 1. 

The degree of industry 4.0 is constructed by standardising and adding 
industry 4.0 patents intensity and robot intensity for each industry and each 
year (details can be found in Appendix B): 

Degree of industry 4.0 = industry 4.0 patent intensity (standardized) 
+ robot intensity (standardized) 

Industry 4.0 patent intensity is constructed by dividing the stock of 
industry 4.0 related patents (each including 10% depreciation rate per 
year) by the stock of all patents in the sector. Our dataset on industry 4.0 
related patents has been constructed by aggregating patent applications 
in eight technology fields: big data and analytics, robotics and autono-
mous systems, cloud computing, the internet of things, artificial intel-
ligence (AI), 3D printing, digital security, and digital measuring tools 
and sensors. Details about the origin of these patent fields and the un-
derlying methodology can be found in Appendix A. 

Table 1 
Data.  

Variable 
(availability) 

Definition Unit Data sources 

Industry 4.0 
Degree of 

industry 4.0 
(Stock of industrial 
robots divided by 
real value added 
(standardized)) +
(Stock of industry 
4.0 related patents 
divided by total 
stock of patents 
(standardized)) 

Standardized 
index, mean =
0, normally 
distributed 

International 
Federation of 
Robotics Industrial 
Robots Report 
China National 
Intellectual 
Property 
Administration 
(CNIPA) via the 
European Patent 
Office’s PATSTAT 
database 

Industrial robot 
stock 
(2006–2020) 

Stock of industrial 
robots (including 
implicit 
depreciation rate, 
depreciation of 
robots every 12 
years) 

Number of 
robots 

International 
Federation of 
Robotics Industrial 
Robots Report 
For methodological 
notes see [50,51] 

Industry 4.0 
patent stock 
(2006–2019) 

Stock of industry 
4.0 related patents 
(including 10% 
depreciation rate 
per year). 

Number of 
patens 

CNIPA via the 
European Patent 
Office’s PATSTAT 
database 

Environmental impact 
Energy 

consumption 
Total final energy 
consumption in tera 
joule (TJ) in the 
end-use industrial 
sectors 

TJ International 
Energy Agency 
(IEA) World Energy 
Balances 2021 
Edition. “Total final 
consumption” Energy intensity 

(2006–2019) 
Total final energy 
consumption in TJ 
in the end-use 
industrial sectors 
per unit of GVA 

TJ/US-Dollars 

Control 
Gross Value 

Added (GVA) 
and real value 
added (RVA) 
(2006–2018)a 

Sectoral Gross 
Domestic Product 
(GDP); GVA is GDP 
subdivided by 
sectors with taxes 
deducted and 
subsidies added; 
real value added 
(RVA) is GVA 
adjusted by annual 
sectoral purchasing 
price indeces (PPI) 

US-Dollars, 
Millions 

OECD Input-Output 
Table (2021 
Edition) 

Energy Price 
Index 
(2000–2020) 

PPI for industrial 
producers of fuel 
and power 

Index (Year 
2000 = 100) 

China National 
Bureau of Statistics 
(NBS) 

Emission 
intensity of 
imports 
(2006–2018)b 

Total CO2 
emissions embodied 
in gross imports 

1000 tonnes OECD 

R&D 
Expenditure 
(2008–2018)c 

R&D Expenditure 
(2008–2018)a 

Yuan, Millions OECD ANBERD, 
NBS 

R&D Expenditure of 
large and medium 
sized enterprises 
(2003–2010) 

Trade intensity Sum of imports and 
exports divided by 
GVA 

- OECD Input-Output 
Table (2021 
Edition) 

Foreign capital 
(2006–2019) 

Foreign capital of 
industrial 
enterprises above 
designated size 

Yuan, Millions NBS 

Notes. 
a 2019 value extrapolated based on China NBS; assumption: Value added 

(VA)/R&D expenditure has increased at the same rate in each sectors, as total 
VA/R&D has increased for industry as a whole. 

b 2019 is imputed by taking the average growth rate over the past 5 years and 
multiplying the 2018 value with that rate. 

c 2006–2007 missing in OECD ANBERD: Approximation of 2006 and 2007 
values by calculating annual percentage changes in NBS database and applying 
to last available value in OECD database (e.g., 2008 to 2007 change from NBS 
used to impute 2007 OECD value); Industry 9 (transport) in the period of 
2008–2011 missing: approximation of Industry 9 in that period using annual 
percentage changes observed in the NBS data "R&D expenditure of large and 
medium sized enterprises". 
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Robot intensity is constructed by dividing the stock of industrial 
robots (including full depreciation of robots every 12 years) by the real 
value added (RVA) generated in the industry sector. We standardize 
both variables (mean = 0, normally distributed). 

Energy consumption and energy intensity are used as proxies for the 
environmental impact of industry sectors. Energy data is taken from the 
International Energy Agency (IEA). Energy intensity is constructed by 
dividing energy consumption by sectoral real value added. More details 
on the data preparation and additional descriptive results and can be 
found in Appendix B and C. 

3.2. Estimation strategy 

We estimate econometric models of the association between the 
degree of industry 4.0 and energy consumption as well as energy in-
tensity separately in ten Chinese manufacturing sectors (see Fig. 3). We 
specify static, parametric panel models as frequently used in related 
studies [10] with the following specification: 

ln(ener)it = β1I4.0degreeit + β2lnRVAit + β3lnforeignit + β4lnRDit

+ β5lntrade intit + β6lnCO2impit + β7PPIenert + uit  

ln(ener int) = β1I4.0degreeit + β2 lnforeign intit + β4 lnRD intit

+ β5 lntrade intit + β6 lnCO2imp intit + β7PPIenert + uit  

where ener/ener_intit is energy consumption/energy intensity of sector i 
at time t, respectively; where β1 … β8 are estimation parameters; where 
I4.0degree is the degree of I4.0 at time t in sector i; where RVA, foreign/ 
foreign_int, RD/RD_int, trade/trade_int, CO2imp/CO2imp_int are control 
variables at time t in sector i in levels and intensities, respectively; where 
PPIener is a control variable for energy prices (proxied by the purchasing 
price index of energy) at time t irrespective of the sector (equal for all 
sectors); where depending on the estimator used uit = γi + δt +εit, with γi 
being a sector specific error, δit being a sector-time specific error and εit 
being a random error. 

We test various estimators to explore our research question: Ordinary 
Least Square, one-way fixed effects, two-way fixed effects, random ef-
fects and first difference estimators. Comparing the results of various 
specifications allows us to determine how sensitive our results are to 
changes in the estimators. We use the data analysis software “R”. We log- 
transform (natural logarithm) all variables except the degree of I4.0 
(standardized) and PPI (index variable). For each estimator, we tested 
the relevant model assumptions according to standard procedures for 
panel data analysis [48,49]. We performed several tests, testing for 
linearity, multicollinearity, error structure (including serial correlation, 
cross-sectional dependence, heteroskedasticity, and unit roots (i.e., 
stationarity of variables)). We use the Breusch-Godfrey test [53] which 
indicates serial correlation in the error terms. We use the Pesaran 
cross-sectional dependence test [54] which indicates cross-sectional 
dependence between the errors of the units of observation (sectors) 
for the intensities’ model but not for the level model. Given the existence 
of cross-sectional dependence, second-generation unit root tests are 
necessary. The cross-sectionally augmented Dickey-Fuller [55] test in-
dicates no unit roots, although our time series might be too short to 
detect unit roots, as the question of co-integration/unit roots is rather 
relevant for long time series [56]. Due to serial correlation and 
cross-sectional dependence, we use cluster-robust standard errors from 
the “msummary” function in R (option “HC3” recommended for small 
samples). We use clustered standard errors. More details about our 

methodological approach can be found in Appendix D. 
It should be noted that our estimation strategy does not allow to 

draw conclusions about causal effects. Specifically, our study design and 
available data does not allow to rule out endogeneity. For instance, 
energy intensity of sectors might affect innovation activities in these 
sectors, and thus reverse causality might apply. Additionally, energy 
consumption is likely to be influenced by other factors not accounted for 
in the model, such as sectoral policy decisions, which inflicts the prob-
lem of omitted variable bias. Therefore, we interpret our results as 
correlations, informed by our underlying conceptual framework through 
which we hypothesise and discuss potential causal relationships. 

Fig. 3. Conceptual framework: The total effect of industry 4.0 on a sector’s energy intensity and consumption depends on the size of the direct effect, the technology 
effect (efficiency changes in sector due to industry 4.0), scale effect (growth of sector due to industry 4.0) and structure effect (shift of composition of sectors due to 
industry 4.0) [12], also see section 2. Please note that we do not intend to estimate (decompose) the size of the direct and different indirect effects on energy 
consumption and intensity. For decomposition studies, please see Ref. [52]. 
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4. Results 

4.1. Descriptive analysis 

The degree of I4.0 (Fig. 4) has remained relatively stable for most 
sectors until 2012, except for the transport sector, where a steady in-
crease can be observed since 2007. Machinery, rubber, plastics and 
other manufacturing experience an accelerated increase in the degree of 
I4.0 since 2012. All other sectors remain below average (standardized 
scale) for most of the observed period. 

Energy consumption (Fig. 1, see introduction) has increased over 
time, while energy intensity (Fig. 2, see introduction) has decreased over 

time for most sectors, but is highest in the sectors metals, non-metals, 
chemicals and rubber, plastics and other manufacturing. Energy in-
tensity decreases teepest for the sectors with the highest energy intensity 
to start with. 

To better understand sectoral heterogeneity, we plot mean energy 
consumption and mean energy intensity against mean I4.0 degree 
(Fig. 5). The visual inspection suggests that there are three groups of 
industries: low energy consumption and low degree of I4.0 in the lower 
left corner (food, textiles, paper, wood), high degree of I4.0 and low 
energy consumption in the lower right corner (machinery, transport 
and, relatively far out, rubber, plastics and other manufacturing ) and 
low degree of I4.0 and high energy consumption in the upper left corner 

Fig. 4. Degree of Industry 4.0 by manufacturing sector in China 2006–2019ote: due to standardization, values can be below 0.  

Fig. 5. Scatterplot of sectors by mean energy use and mean degree of industry 4.0.  
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(metals, non-metallic minerals, chemicals) 
To conclude, industry sectors show heterogeneity in the indicators of 

interest. Particularly, there are only a few sectors with relatively high 
degrees of I4.0 (machinery, transport, rubber, plastics and other 
manufacturing), and the other sectors have similar mean degrees of I4.0, 
but display diverging mean energy consumptions. This skewness poses 
challenges to our estimation approach which we will discuss in the 
limitations section. In the following, we will explore whether any sys-
tematic statistical relationship between these indicators can be detected. 

4.2. Inference 

We report two models with four different specifications each. Model 

1 uses energy consumption as the dependent variable, model 2 uses 
energy intensity as the dependent variable. 

Regarding energy consumption as dependent variable (Model 1, 
Table 2), no significant effects of the degree of I4.0 can be detected in 
either model specification. Real value added and energy price index 
have a significant positive association with energy in the random effects 
and fixed effects specification. Regarding energy intensity as dependent 
variable (Model 2, Table 3) no significant effects of the degree of I4.0 can 
be detected in either model specification. The energy price has a sig-
nificant energy intensity reducing effect in the fixed effects and random 
effects specification. Foreign capital intensity has a significant positive 
effect on energy intensity. Figs. 6 and 7 summarize the results of the 
sector fixed effects estimators of Model 1 and 2. 

Table 2 
Dependent variable: ln(energy), independent variables: levels.  

Model 1 
Energy consumption 

No control variables Pooled OLS Time and sector fixed effects Sector fixed effects Random effects First difference 

(Intercept) 14.563*** 6.409+ 11.156*** − 0.011 
(0.102) (3.660)   (1.152) (0.018) 

I4.0degree ¡0.049 ¡0.152 0.032 0.019 0.019 0.011 
(0.048) (0.142) (0.026) (0.018) (0.018) (0.028) 

ln(RVA)  0.418 0.320+ 0.263* 0.259* 0.154  
(0.364) (0.178) (0.102) (0.102) (0.143) 

ln(realRD2)  − 0.419 − 0.112 − 0.092 − 0.091 0.046  
(0.268) (0.083) (0.062) (0.063) (0.040) 

ln(trade_int)  0.189 0.027 0.023 0.023 0.009*  
(0.118) (0.020) (0.017) (0.018) (0.004) 

ln(PPIener)  − 0.112  0.297** 0.292** 0.192*  
(0.474)  (0.088) (0.091) (0.074) 

ln(realforeign)  − 0.020 0.071 0.147 0.153 0.130*  
(0.298) (0.138) (0.104) (0.103) (0.050) 

ln(CO2imp)  0.818** − 0.081 − 0.068 − 0.062 − 0.034  
(0.291) (0.055) (0.057) (0.055) (0.025) 

Num.Obs. 140 140 140 140 140 130 
R2 0.005 0.501 0.427 0.614 0.601 0.151 
R2 Adj. − 0.003 0.475 0.282 0.564 0.580 0.102 
AIC 4521.3 1109.6 463.4 486.0 495.4 465.1 
BIC 4530.1 1136.0 484.0 509.5 521.9 490.9 
Log.Lik. − 219.694      
F 1.009      
RMSE 1.16 0.82 0.08 0.09 0.09 0.08 

Notes: + p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, standard deviations in parentheses. 

Table 3 
Dependent variable: ln(energy intensity), independent variables: intensities.  

Model 2 
Energy intensity 

No control variables Pooled OLS Time and sector fixed effects Sector fixed effects Random effects First difference 

(Intercept) 2.763*** 4.314***   3.515*** − 0.073*** 
(0.095) (0.881)   (0.357) (0.017) 

I4.0degree ¡0.196** ¡0.177 0.033 ¡0.021 ¡0.022 0.040 
(0.061) (0.170) (0.030) (0.020) (0.020) (0.049) 

ln(RD_int)  − 0.497 − 0.022 − 0.141 − 0.146 0.158***  
(0.420) (0.044) (0.129) (0.130) (0.017) 

ln(trade_int)  0.184 0.018 − 0.011 − 0.010 0.006  
(0.135) (0.020) (0.022) (0.022) (0.005) 

PPIener  − 0.158  − 0.207*** − 0.209*** − 0.050  
(0.114)  (0.057) (0.055) (0.045) 

ln(foreign_int)  0.011 0.245 0.768*** 0.758*** 0.295*  
(0.316) (0.152) (0.102) (0.100) (0.118) 

ln(CO2imp_int)  0.882* 0.135+ 0.213+ 0.218+ 0.042  
(0.358) (0.073) (0.110) (0.111) (0.031) 

Num.Obs. 140 140 140 140 140 130 
R2 0.076 0.453 0.334 0.868 0.861 0.281 
R2 Adj. 0.069 0.429 0.173 0.852 0.855 0.246 
AIC 1201.6 624.3 2.2 106.5 117.3 − 6.2 
BIC 1210.5 647.8 19.8 127.1 140.8 16.7 
Log.Lik. − 214.233      
F 10.134      
RMSE 1.12 0.86 0.09 0.14 0.14 0.08 

Notes: + p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, standard deviations in parentheses. 
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Fig. 6. Variables’ correlation with energy consumption, sector fixed effects estimator.  

Fig. 7. Variables’ correlation with energy intensity, sector fixed effects estimator.  
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4.3. Heterogeneity analysis 

We perform one-way fixed effects analysis for energy and energy 
intensity on subsets of the data, splitting the dataset according to 1) 
sectors and 2) time. Firstly, we separate sectors according to whether 
they are comparatively a) high or low energy as well as b) highly or less 
digitalised. We calculate the average of energy intensity per sector over 
time and take those sectors as high energy which are above average. We 
calculate the average of the degree of I4.0 over time per sector and take 
those sectors as highly digitalized sectors which are above average. The 
results are largely in line with the visual inspection of the plots in section 
4.1 and with a classification by Calvino et al. [57] for the OECD context.3 

This results in the following classification:  

• “high energy sectors”: metals; non-metallic minerals; chemicals; 
rubber plastics and other manufacturing  

• “low energy sectors”: food; textiles; wood; paper; transport, 
machinery  

• “highly digitalised sectors”: machinery; transport; rubber, plastics 
and other manufacturing 

• “less digitalised sectors”: food; textiles; wood; paper; metals; chem-
icals; non-metal minerals 

Secondly, we separate the data into two time periods (2006–2011; 
2012–2019) and see if there are differences in the significance of results 
for each period. The date is chosen because the concept of I4.0 has been 
published in 2011 and has gained relevance thereafter. However, since 
the regression on the split time span does not yield any additional sig-
nificant results (see Appendix D) we only report the results of separating 
sectors according to energy and degree of I4.0 (Models 3 and 4). 

Regarding energy consumption, the heterogeneity analysis with re-
gressions on subgroups of the data suggests that the degree of I4.0 has a 
significant positive association with energy in low energy sectors and a 
significant positive effect to the 10% level in highly digitalised sectors 
(Model 3, Table 4). Furthermore, in highly digitalised sectors, CO2 
embodied in imports is positively correlated with energy consumption. 
Regarding energy intensity, the degree of I4.0 has a significant negative 

Table 4 
Dependent variable: ln(energy), independent variables: levels, Sector fixed effects estimator.  

Model 3 High ener sectors Low ener sectors High digi sectors Less digi sectors 

I4.0degree 0.046 0.040* 0.018þ ¡0.023 
(0.105) (0.015) (0.009) (0.082) 

ln(RVA) 0.163 0.214 − 0.172 0.357*** 
(0.118) (0.141) (0.175) (0.080) 

ln(realRD2) − 0.037 − 0.133* 0.089 − 0.169* 
(0.060) (0.058) (0.077) (0.070) 

ln(trade_int) 0.020 0.017 − 0.019** 0.022 
(0.017) (0.016) (0.006) (0.020) 

ln(PPIener) 0.361** 0.322** 0.561*** 0.163* 
(0.103) (0.113) (0.130) (0.073) 

ln(realforeign) 0.383** 0.090 0.311 0.127 
(0.139) (0.101) (0.242) (0.096) 

ln(CO2imp) − 0.001 − 0.051 0.130* − 0.022 
(0.043) (0.127) (0.062) (0.076) 

Num.Obs. 56 84 42 98 
R2 0.762 0.625 0.776 0.577 
R2 Adj. 0.709 0.562 0.713 0.512 
AIC 199.8 268.9 142.0 344.3 
BIC 216.0 288.4 155.9 364.9 
RMSE 0.08 0.08 0.08 0.09 
Std.Errors HC3 HC3 HC3 HC3 

Notes: + p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, standard deviations in parentheses. 

Table 5 
Dependent variable: Ln(energy intensity), independent variables: intensities, Sector fixed effects estimator.  

Model 4 High ener sectors Low ener sectors High digi sectors Less digi sectors 

I4.0degree 0.107 0.002 ¡0.019* ¡0.076 
(0.099) (0.021) (0.007) (0.112) 

ln(RD_int) − 0.055 − 0.313** 0.217*** − 0.343* 
(0.078) (0.111) (0.009) (0.133) 

ln(trade_int) 0.029 − 0.023 − 0.056** − 0.021 
(0.044) (0.034) (0.016) (0.028) 

PPIener − 0.101+ − 0.204* 0.023 − 0.201** 
(0.060) (0.089) (0.035) (0.074) 

ln(foreign_int) 0.887*** 0.761*** 0.965** 0.662*** 
(0.096) (0.091) (0.280) (0.059) 

ln(CO2imp_int) 0.076 0.484*** 0.401 0.339** 
(0.102) (0.121) (0.281) (0.123) 

Num.Obs. 56 84 42 98 
R2 0.927 0.877 0.896 0.896 
R2 Adj. 0.912 0.858 0.870 0.881 
AIC 71.8 10.1 − 5.7 92.3 
BIC 85.9 27.1 6.5 110.4 
RMSE 0.10 0.13 0.11 0.13 
Std.Errors HC3 HC3 HC3 HC3 

Notes: + p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, standard deviations in parentheses. 

3 Calvino et al. find the sector “wood and paper” to be of medium-high digital 
intensity in the OECD context [105]. 
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effect on energy intensity in highly digitalised sectors (Model 4, 
Table 5). Among the control variables, foreign capital intensity has a 
strong positive association with energy intensity. Here, CO2 intensity 
embodied in imports has a positive association with energy intensity in 
low energy sectors and less digitalised sectors. 

5. Discussion 

5.1. Relationship between the degree of industry 4.0, manufacturing 
energy intensity and energy consumption 

The main intention of this study is to understand how far the degree 
of I4.0 in sectors is linked to overall energy consumption and energy 
intensity of manufacturing sectors in China and thus whether the ex-
pected benefits of industry 4.0 for energy savings can be detected in our 
statistical analysis. 

Regarding overall energy consumption in manufacturing sectors in 
China, our results indicate that there is no significant relationship be-
tween the degree of I4.0 and energy consumption. The relationship is 
positive but not significant for the fixed effects, random effects and first 
difference model. In our heterogeneity analysis, the degree of I4.0 has a 
significant positive relationship with energy consumption in the group 
of low energy industries. This is in line with the general notion that the 
digital technologies associated with I4.0 require energy in their opera-
tion (direct effect; see [44,58]). For instance, using robots instead of 
manual labour in currently less digitalised textiles manufacturing, may 
likely increase energy consumption of textile manufacturing. Addition-
ally, digitalisation has an economic growth-inducing effect (scale effect) 
which typically increases energy consumption [44,59–61]. 

Regarding energy intensity, our results indicate that there is no 
overall significant relationship between the degree of I4.0 and energy 
intensity. Energy intensity reductions observed in China in the past 
decades in most sectors (see Fig. 2 in the introduction section) can thus 
not be linked statistically to the degree of I4.0 in our study. Our results 
coincide with the results of Zhou et al. [52] for high energy sectors who 
equally find negligible effects of ICT on energy intensity. For the met-
allurgy industry in China, Lin and Xu [62] find that the replacement of 
labour with energy through mechanization of production processes, 
hinders energy intensity reduction in the sector – an effect which might 
similarly occur for industry 4.0-induced automation and technological 
upgrading in sectors. However, there are also several studies which 
contradict our results, finding an energy intensity reducing impact of 
robots and industrial digitalisation [20,23,44,63], which we only find 
for highly digitalised sectors. 

We identified several reasons for the differences between our results 
and interpretations and those in previous studies. Firstly, this may have 
methodological reasons, as explained in more detail in the limitations 
section. For instance, since patents are a forward-looking indicator, ef-
fects on energy indicators may only unfold at a later point in time. 
Moreover, both robot and patent data, are unequally distributed across 
sectors. Some sectors thus display very low, some sectors very high 
degrees of industry 4.0, which has to do with heterogeneous technology 
uptake in sectors but also with our method of assigning patent data to 
industry sectors. The remsulting low variability of the degree of I4.0 in 
some sectors over the analysed period makes it more difficult to identify 
effects of industry 4.0 on energy indicators. Lastly, other studies use 
other econometric specifications which also has been found to lead to 
inconsistent results across studies [10]. 

Secondly, the technological change associated with I4.0, and thus 
presumably its impact on energy, is heterogeneous. By including patents 
in eight technology fields, we captured a wide variety of innovation in 
the field of I4.0. While it is often argued that innovation can foster en-
ergy intensity reductions [e.g., Ref. [64]], it is not clear whether this is 
true for all I4.0 technologies which we subsume in our patents indicator. 
For instance, the use of computing-intense algorithms, such as artificial 
intelligence, requires high amounts of energy [61] and can be 

hypothesized to increase energy intensity in sectors that apply such al-
gorithms. Equally, the impacts of hardware and software might be 
heterogeneous. In a study on the digital economy in China, Wang et al. 
[65] find that telecommunication services as inputs in other industries 
have helped to decrease emissions in China, while the increased input of 
electronic components have contributed to an increase in emissions 
through indirect structural effects. Ji et al. [66] estimating a two-way 
fixed effects model of the impact of the digital economy on green 
development equally do not find a significant effect of the digital 
manufacturing industry on green development, but find a positive effect 
of the digital service industry on green development mediated by 
innovation. Due to a lack of detailed data for industry 4.0 related hard- 
and software, such heterogeneous effects are difficult to disentangle. 

Thirdly, many econometric studies on the effects of digitalisation in 
industry do not control for the possibility of offshoring (energy-inten-
sive) industrial activities to other countries. While trade is often 
included as an indicator in related studies, the variable does not allow to 
draw conclusions about the structure (e.g., energy intensity) of goods 
and services that are being imported and exported. I4.0 is expected to 
affect companies’ manufacturing location decisions [67], for instance, 
by reducing transaction costs and facilitating collaboration with inter-
national partners. This may lead to changes in domestic and foreign 
energy intensity of manufacturing, e.g., when energy-intensive pro-
duction steps are outsourced to other countries or more energy-intensive 
inputs are imported from other countries [68]. In studies which omit this 
possibility, energy intensity reductions that arise through 
digitalisation-related offshoring may mistakenly be attributed to digi-
talisation itself, and foreign energy intensity increases may be neglected. 
Regarding China, some of the energy intensity decreases through digi-
talisation in China detected in previous studies may stem from 
energy-intensive production steps having been outsourced. To partly 
capture such effects, we included the indicator CO2 imports as a proxy 
for energy intensity of imported goods. We find significant positive as-
sociations between CO2 imports and the degree of I4.0, suggesting that a 
higher degree of I4.0 is linked to higher CO2 imports, but further 
research is required to understand the underlying dynamics. 

Lastly, irrespective of how large the energy intensity reducing effects 
of I4.0 are, it should be noted that energy intensity changes can have 
different origins and that this may affect the effectiveness and desir-
ability of energy intensity reductions from an environmental point of 
view. As Hardt et al. [68] point out, energy intensity changes can be 
differentiated into 1) a component of thermodynamic conversion effi-
ciency4 and 2) a component of changing monetary output per unit of 
useful exergy.5 If energy intensity (energy consumption divided by value 
added) decreases mainly due to increasing value added (case 2)), as 
found for the case of energy intensity reductions in the UK [68], the 
technology-driven increase in conversion efficiency (case 1)) is much 
smaller than expected. In other words, energy intensity reducing im-
pacts of I4.0 might stem from a scale (growth-inducing) effect rather 
than from a technology effect. Scale effect driven energy intensity effects 
have been found for the case of robot adoption in Chinese firms [57] and 
for the digital economy in China [69]. What does this mean for the 
relationship between energy, energy intensity and industry 4.0? As 
argued above, the expectation that I4.0 will not only contribute to en-
ergy intensity reductions but also to absolute energy reductions may be 
dampened. If energy intensity reductions mainly result from scale ef-
fects, then efficiency increases may be (partly) compensated by the 
simultaneous scale effect. This digital rebound effect makes it difficult to 

4 Thermodynamic conversion efficiency is the “efficiency with which final 
energy is transformed into useful exergy in each sector” [79]. 

5 Exergy is the "work that is delivered at the last stage of the energy con-
version chain that can still be measured in energy units, for example useful 
heat, mechanical drive, or light” (qualitative measure), may be called “available 
energy” [68,70]. 
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achieve aggregate reductions of energy consumption. Studies by 
Brockway et al. [70] who find a large energy rebound of technological 
change for China between 1981 and 2010 and Jin and Yu who detect a 
rebound effect of ICT in energy-intensive industries in China [71] sup-
port this concern. 

5.2. Other drivers of changes in energy consumption in manufacturing 
sectors 

Chinese energy consumption and energy intensity in manufacturing 
is affected by a number of other drivers, such as policy interventions 
[72], R&D [73] and renewable energy development [74,75]. Two 
drivers which may be particularly relevant in the discussion of the 
impact of I4.0 on energy indicators are discussed below. 

5.2.1. Research and development 
Huang et al. [39] show that there are differences in the energy in-

tensity reducing effect of R&D at different stages of the innovation 
process and by different actors. Effects are found to be higher in the 
experimental and developmental stage than in basic research, and 
higher if performed by industrial enterprises than by higher education 
institutions. The authors highlight that higher human capital, defined as 
the average years of education, has a positive effect on energy intensity 
reduction, as it increases absorptive abilities for technological innova-
tion of companies. Thus, transferred to I4.0 innovation, similar ques-
tions about mediating factors may arise: Who produces I4.0 innovation 
at which stage of the industrial innovation process, and do human ca-
pabilities exist (in the firm) to enable absorption of innovation, in order 
to reduce energy intensity and consumption? 

5.2.2. Renewable energy development 
Liu et al. [74] find that renewable energy development first has an 

energy intensity increasing effect which reverses for high levels of per 
capita GDP (56500 yuan). Nonetheless, employment of renewable en-
ergies can help to reduce emissions, and the emission-reducing effect of 
renewable energies has been found to be strengthened by R&D [76]. The 
digital economy seems to play a role in renewable energy development, 
too. Shahbaz et al. [77] show that, mediated by governance, digital 
economy can have a positive role for the employment of renewables. 
Thus, the question arises how I4.0 can specifically help to replace fossil 
fuel-based processes with renewable energy-based processes in 
manufacturing. For instance, a 10-year study on flexibilization of 
energy-intensive industries (e.g., glass manufacturing, raw material 
melting and electric steel) in the German context investigates the po-
tential of industrial demand-side management and the role of informa-
tion technology for flexibilization in the energy market [78]. 

5.3. Limitations 

There are several limitations to our data and methodology that might 
lead to bias in our results. 

Firstly, our concept and measurement of I4.0 can be challenged. 
While we acknowledge that I4.0 refers to a broad manufacturing 
transformation, which is coined by interactions between the techno-
logical, organisational and human dimensions, we only analyse a frac-
tion of the variables that may indicate such a transformation. For 
instance, Beier et al. provide a list of features of the concept of I4.0, such 
as employees, collaboration, and decentralization [1], which we have 
not captured in our analysis. The reason for this narrow focus is the (un-) 
availability of time series or panel data on additional features of I4.0 on 
a sectoral level in China. Additionally, due to the relatively recent 
emergence, broadness and interdisciplinarity of the concept of I4.0, no 
unified definition and measurement standards have been determined yet 
[1,79]. An extensive review of data has been performed prior to the 
analysis to identify how other research has dealt with this issue. It has 
been concluded that few other relevant datasets were available on the 

sector level in China to perform the desired research. We decided to use 
a yet less common indicator for the measurement of I4.0, namely I4.0 
patents. We believe that patents are a good proxy for innovative en-
deavours, especially in the field of I4.0 where recent technology de-
velopments could not otherwise be captured [80]. Patent indicators are 
also highly correlated with R&D, a widespread indicator of innovation 
activity. We combine this indicator with robot stock, an indicator which 
has repeatedly been used to analyse I4.0 and AI in previous works [20, 
23,34,33,81]. 

Secondly, notwithstanding the advantages of the data used, it comes 
with limitations. Regarding robot data, a large share of robots falls in the 
category “unspecified”, and no further classification is possible. This 
number could be as high as 45% [63]. Moreover, the lack of continuous 
depreciation of the robot stock does not reflect typical capital decu-
mulation processes assumed in the mainstream literature. Another 
downside is that robots developed in-house are also not counted in the 
statistics. Lastly, there is no quality measurement incorporated in the 
International Federation of Robotics measure, thus each industrial robot 
is counted as one irrespective of its monetary and use value [50]. 

Regarding patent data, patents are not classified into sectors in 
patent offices (see further explanation in Appendix B). They are only 
assigned patent classification codes by patent examiners to identify 
them (e.g., the “IPC” or the “CPC” classification). We therefore had to 
convert the patent data to sectors , which we accomplished by matching 
the patent data at the applicant/firm-level to the Orbis database. This 
means that only those patents could be matched, whose company in-
formation are in the Orbis database. However, we assume that those 
companies who have more financial means for research activities are 
more likely to be represented in the Orbis database than smaller com-
panies with fewer patenting activities. Additionally, this leads to a 
concentration of patents in few sectors, where the largest innovator 
firms are subsumed. By applying logarithmic transformations in the 
regression analysis, we smooth the distribution. Furthermore, there is 
reason to believe that many patents have little value [82]. However, 
since we are only looking at one country and compare sectors, we do not 
assume that there are systematic differences in the share of patents with 
little value across industries. Lastly, not all inventions are covered by 
patents (e.g., open source technologies) and applicants use other 
appropriation mechanisms to reap benefits from their inventions. For 
instance, a company might be highly digitalised but does not pursue 
patenting activity. While these are valid concerns, we again assume that 
there are no systematic biases regarding the choice of appropriation 
mechanisms. 

Thirdly, as noted above, our estimation strategy does not allow us to 
report causal effects. It would have been interesting to understand the 
counterfactual energy consumption and energy intensity developments, 
had I4.0 not been present in a sector, or the causal impact of the 
introduction of I4.0 in a manufacturing sector on energy. We considered 
possible ways to estimate causal models, for instance, by measuring the 
link between digital technologies prior to and after a policy intervention 
through a difference-in-difference approach. However, we could not 
identify a suitable causal modelling approach for our research question, 
since we view the proliferation of digital technologies as a gradual 
process with no clear time marks, and also intertwined with other de-
velopments whose influences we could not rule out due to limited panel 
data availability for China. 

Finally, another limitation of our study is our narrow sustainability 
concept. Energy use is only one of many environmental implications of 
digitalisation in industry, and it also has numerous social implications, 
such as a changing task profiles and the polarisation of wages. Again, 
due to limited data availability, we focus on energy and hope that data 
sources are continuously being generated to allow future research to 
take a deeper look into other sustainability aspects. 
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5.4. Future research 

Future studies could improve our research in several dimensions. The 
concept, measurement and data of I4.0 should be improved. Recent ef-
forts to develop shared definitions and standards of I4.0 in practice will 
help researchers to refine their frameworks for analysis. More data on 
other characteristics of I4.0 should also be gathered and assessed. For 
instance, Chinese data on employees’ ICT skills and the employment of 
ICT specialists could be evaluated to include the human dimension of 
I4.0, as done on the EU level by Matthess et al. [81]. Moreover, company 
level data and provincial level data on I4.0’s technological, social and 
organisational features should be collected over time to track de-
velopments on a more granular (firm or local) level, including specific 
technologies’ potential and risks in different industrial application fields 
and geographical regions. Regarding causality, case studies of the firm 
and sector level over time quantitatively and qualitatively measuring 
I4.0’s effect on energy savings could alleviate some of the shortcomings 
of statistical analyses, and the case of Chinese manufacturing could be 
compared to other world regions’ experiences. 

More insights are also needed into the international relocation of 
environmental burden through I4.0. In the context of China it would be 
interesting to explore in more detail how energy-intensive industries can 
be made more environmentally friendly while avoiding that energy- 
intensive processes be moved to locations where energy might be 
cheaper or environmental regulations less strict. Pappas et al. [83] 
discuss the risk of industrial relocation of manufacturing for the envi-
ronment for the examples of India and Indonesia. The emissions in-
tensity in these countries, being destinations for Chinese offshoring in 
the iron and steel sector and the non-metallic minerals sector, respec-
tively, is double the emission intensity in China. Similarly, if firms 
continue to increase cloud capacities and outsource tasks to digital 
service providers, energy consumption might shift to other sectors (e.g., 
telecommunication services sector) in the same country, or other 
countries, and might not be accounted for in a (manufacturing) 
sector-specific, national statistic. Thus, in future studies, it will be 
interesting to take an international perspective on I4.0’s impacts, e.g., 
by including closely related trade partners of China and analyse the joint 
impact of I4.0 on sectoral energy intensity. 

Regarding the concept of sustainability, research is currently 
focusing on energy and emissions, but more data should be made 
available and evaluated by researchers on other environmental and 
social effects of I4.0 in Chinese manufacturing sectors. For environ-
mental indicators, material input/throughput, utilization and disposal 
of industrial wastes, land use associated with digital infrastructure, (e− ) 
waste generation and environmentally friendly sourcing of digital 
technologies [10] should be assessed to determine the overall environ-
mental impacts of I4.0. For social indicators, it would be particularly 
interesting to analyse possible trade-offs between social and environ-
ment effects of I4.0, for instance in a scenario where digitalisation would 
reduce energy consumption but simultaneously reduce wages of less 
skilled workers and thus increase social inequalities. 

6. Concluding remarks 

Energy consumption in industry made up 38% of global final energy 
consumption (169 EJ) in 2021 with a 5 percentage points growth since 
2000 [84]. China is the largest contributor to this increase [24]. Energy 
demand is projected to continue to grow. Increasing renewable energcy 
capacities, which made up less than 3% of Chinese energy production in 
20196, will arguably not suffice to achieve ambitious decarbonisation 
targets. With increasing political and industry interest in leveraging I4.0 
for sustainability, it is crucial to understand how I4.0 impacts energy 

consumption and other sustainability indicators in industry. In this 
study we analysed the link between I4.0, energy consumption and en-
ergy intensity in ten manufacturing sectors in the period between 2006 
and 2019 in China through a panel data analysis. We found that there is 
currently no clear trend that I4.0 has an either positive or negative effect 
on energy consumption and intensity in manufacturing sectors, in 
contrast to several recent studies which posit an energy intensity 
reducing effect of I4.0. We found differences in the correlations between 
less and more digitalised and less and more energy intensive sectors, 
pointing to heterogeneous effects in sectors. We raised and discussed 
hypotheses about why energy intensity reductions, including through 
I4.0, may not necessarily lead to reductions in energy consumption. On a 
conceptual level, scale effects and other energy demand increasing 
structural effects of I4.0 may be larger than its energy intensity reducing 
structural and technology effects. Specifically, I4.0 may entail digital 
rebound effects in industry [71,85] and lead to increasing relocation of 
energy-intensive industrial activities to other countries. We conclude 
that a narrow focus on the reduction of energy intensity through I4.0 can 
be ineffective for decarbonisation if it mainly results in energy intensity 
decreasing output increase and possibly to an overall increasing total en-
ergy consumption. Other factors should be considered in the design of I4.0 
measures, such as its impact on industrial relocation, heterogenous and 
sector-specific impacts of different digital technologies, human capa-
bilities to adopt innovations and steer them towards sustainability, and 
the simultaneous integration of renewable energies in manufacturing 
sectors. Lastly, other sustainability indicators should also be considered, 
such as resource consumption and e-waste through digital technologies. 

The novelty of the analysis was a) to use more recent and more 
granular data for manufacturing sectors than previous studies, b) to 
approximate I4.0 with patent and robot data as opposed to general 
digitalisation indicators used in similar studies (such as broadband 
coverage), c) to discuss the interaction between energy consumption, 
energy intensity and I4.0 in China and its implications beyond the 
country case. This allowed us to reflect on the role of I4.0 for absolute 
reduction of energy consumption as opposed to efficiency-focused ac-
counts, and point to global challenges, rather than isolating the debate 
to China. However, our approach also entailed a set of limitations, e.g., 
we analysed a relatively small and skewed dataset, sensitive to changes 
in the econometric modelling; and we did not construct a causal model, 
instead analysing correlations between indicators. Nonetheless, we 
deem our study a valuable contribution to the debate by shedding light 
on the assumptions, omissions and limitations of previous statistical 
analyses of I4.0. Specifically, we highlighted that important variables 
may be missing in previous studies and that the positive framing of the 
environmental benefits of I4.0 presented in policy or industry strategies 
and by scientific research may also contribute to bias in statistical 
analyses. 

We close with some industry and policy recommendations to help 
make I4.0 contribute to more environmentally sustainable 
manufacturing. In China, special attention needs to be paid 1) to the 
implementation of sectoral measures and monitoring to steer I4.0 to-
wards sustainability, particularly in the most energy-intensive sectors, 
where rebound effects are expected to be large [71], 2) to the prevention 
of offshoring of energy-intensive production processes, including due to 
I4.0, and 3) to the absolute reductions of energy consumption and 
emissions, even under a value added growth paradigm. Firstly, due to 
the growth-inducing effect of I4.0, the specific mechanisms and effects 
through which specific technologies affect energy consumption hetero-
geneously need to be understood to decide which (sectoral) policies 
might help to reduce the absolute environmental burden of industry and 
under which framework conditions. Secondly, political commitment and 
international agreements should prevent that I4.0 leads to an increased 
offshoring of energy-intensive manufacturing processes to countries 
with lower environmental standards. Thirdly, I4.0 in manufacturing 
should therefore be directed in its conception towards the absolute 
reduction of energy demand and curbing emissions along the entire 

6 The term renewable energies refers to solar thermal, wind, non-specified 
biofuels/waste, solar PV; own calculations based on IEA, 2021 data. 
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value chain. The Chinese government’s current focus on upgrading in-
dustrial structure through innovation, in order to induce growth in value 
added and achieve energy intensity reduction targets set in the 
Five-Year-Plans should be complemented by ambitions to reduce energy 
intensity along the entire value chain. For instance, supply chain wide 
approaches to sustainability through I4.0 need to be fostered [86], such 
as through the circular economy initiatives in the EU and China [87,88], 
and green supply chain measures [89]. Moreover, the 2021 China En-
ergy work conference [24] called for the introduction of a ‘dual control’ 
system covering total energy consumption and energy intensity which 
might help to limit rebound effects. Structural change towards a 
post-growth industry [90] would certainly also be helpful to save energy 
[91]. As a politically more likely scenario, a recent study argues that a 
state policy aiming at a 2-degree global warming with deep emission 
cuts would lead to larger economic growth rates than the baseline sce-
nario [92]. Whether larger growth rates are desirable from the view-
point of other environmental indicators (including pollution, resource 
use, biodiversity) is questionable – but at least, pursuing ambitious 
decarbonisation targets can be a first step towards managing the envi-
ronmental effects of I4.0 and transforming traditional manufacturing 
towards environmental sustainability. 
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Appendix 

A. Data 

Industrial robot data 
The industrial robot data used in this study stems from the International Federation of Robotics. This a private company, reporting robot data since 

1993. The International Federation of Robotics definition of industrial robots builds on the definition of the ISO 8373:2012 where a robot is defined as 
an “actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks” (§
2.6). An industrial robot (as opposed to a service robot) is an “automatically controlled, reprogrammable, multipurpose manipulator programmable in 
three or more axes, which can be either fixed in place or mobile for use in industrial automation applications” used “in industrial automation ap-
plications” (§ 2.9). The industrial robot data is generated by contributions from all major industrial robot suppliers worldwide which report data on 
robot installations by country, industry, and application to the International Federation of Robotics Statistical Department. Secondary data by national 
robotics associations is used to complement and validate the data. In the case of China, since 2013, the Chinese Robot Industry Alliance provides data 
from Chinese robot suppliers. Regarding depreciation of robots, the International Federation of Robotics assume an average use time of 12 years with 
immediate withdrawal afterwards [51]. 

Patent data 
We use patent data from the EPO Worldwide Patent Statistical Database (PATSTAT), which provides bibliographical patent data from more than 

100 million patent documents from leading industrialised and developing countries. Specifically, for the case of China, we use patent data from the 
Chinese State Intellectual Property Office. All patents in our sample are counted according to the year of their first filing worldwide, commonly called 
the priority year. This is the date that comes closest to the R&D. Furthermore, we count patents according to the "inventor principle", i.e., patents are 
assigned to the country where the inventor is located (e.g., Siemens is a German company, but if Siemens China branch would file the patent, it would 
count in the Chinese statistic). This is typically where the R&D has been performed. 

In order to delineate the technology fields in our data, we make use of one of the most common classification schemes for patents, namely the 
International Patent Classification (IPC), in which patents are classified according to their technical implications. We combine the IPC based searches 
with keyword-based searches in the title and abstract of the patents for some fields (for some methodological notes, see 93 [93]). The technology field 
definitions and IPC codes were adapted from the UK IP Office [94–97], 98 [98], 27 [32] and the OECD [99]. 

In our analysis we compare industry sectors. However, patents are only classified according to their technological implications but not alongside 
sectors. We therefore have to convert the patent data to sectors (NACE 2-digits), which is accomplished by matching the patent data at the applicant/ 
firm-level to the ORBIS database by Bureau van Dijk. ORBIS is a company database including information on nearly 400 million companies and 
entities across the globe. In order to connect the two databases, we performed a matching on the basis of applicant/company names. After a cleaning of 
the company and person names (e.g., conversion to lowercase letters, removal of special characters and umlauts as well as spaces, removal of legal 
forms), we computed the similarity scores between the two names based on the Levenshtein distance. The Levenshtein distance is a calculation of how 
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many edits would be needed in order to align two text-strings. The lower the number of edits necessary to align two text strings, the higher the 
similarity between the two. All values that exceed a pre-calculated threshold (t > 0.89) are interpreted as a match. Based on this matching, we can 
assign patents to NACE codes based on the NACE code of a company. Lastly, we scanned a random sample of 156 patents by hand and identified 
approx. 13% of the patents as potentially inappropriate for the respective category which we deemed an acceptable error quote. 

Fig. 8 shows a scatterplot of mean I4.0 patent intensity and mean robot intensity over the observed time period in the ten manufacturing sectors. 
The plot reveals that the majority of sectors have both relatively low patent and robot intensity. Within this group, textiles and paper show the highest 
mean I4.0 patent intensity, whereas the sector metals shows the highest mean robot intensity. Three sectors stand out, namely machinery rubber, 
plastics and other manufacturing and transport which show higher mean values in both indicators than the other sectors.

Fig. 8. Scatterplot of sectors by mean robot intensity & mean I4.0 patent intensity over time  

Energy data 
We use energy data provided by the International Energy Agency (IEA) since 1971 and covering up to 95% of the global energy supply. The IEA 

provides the World Energy Statistics as well as the World Energy Balances. The IEA data can be accessed with the Beyond 20/20 Browser. It should be 
noted that that some data is excluded from the IEA database: energy used for transformation processes and for own use of the energy producing 
industries, backflows from the petrochemical industry, international aviation bunkers and international marine bunkers except for the world total 
(here they are reported as world aviation bunkers and world marine bunkers in transport)”. For further methodological notes on IEA see database 
documentation [100] and website information (URL: https://www.iea.org/reports/world-energy-balances-2019). 

Whereas the World Energy Statistics contain commodity balances - key energy statistics provided in original units for the different types of energy 
sources, the World Energy Balances are an accounting framework of the combined national commodity balances and provides all the data in a common 
energy unit. Energy balances help to understand product transformation processes and shine a light on the connections among them to reveal how 
different energy types are being used. Employing a common energy unit permits users to see the total amount of energy used and the respective 
contribution of the different sources, for the whole economy and each individual consumption sector. Moreover, it enables the development of various 
aggregated indicators (e.g., consumption per unit of GDP) and is a frequently used data source for a variety of energy-related research. Hence, our 
analysis uses the World Energy Balances. 

The World Energy Balances contains energy balances for 74 countries and 10 regional aggregates. The energy balances are expressed in tonnes of 
oil equivalent, defined as 107 kilocalories (41.868 GJ). For the People’s Republic of China, which joined the IEA as an association country in 2015, data 
are available starting in 1971. 

Regarding the calorific value of each fuel, the IEA has opted to base their energy balances on net energy content which excludes the energy lost to 
produce water vapour during combustion. Overall, the net calorific values adopted by the IEA are country-specific, time-varying and for some 
products flow dependent. For most products, they are supplied by national administrations and for oil products, they are based on regional default 
values. In the matter of another important methodological choice, the IEA has adopted the following principle: “the primary energy form is the first 
energy form downstream in the production process for which multiple energy uses are practical” (Database documentation, p. 381). This leads to the choice 
between electricity for primary electricity (hydro, wind, tide/wave/ocean and solar photovoltaic) and heat for heat and secondary electricity (nuclear, 
geothermal and solar thermal) as a primary energy form. After the primary energy form has been established for all electricity and heat produced from 
non-combustible sources, the IEA follows the physical energy content method to compute the corresponding primary energy equivalent amounts [101, 
102]. 

Regarding the relationship between energy intensity and energy efficiency, aggregate energy intensity can also be viewed as the weighted average 
of energy efficiency across sectors (i.e., energy efficiency in a sector times the ratio of the sector’s contribution to GDP) ([72]). Thus, we refer to 
(sectoral) energy efficiency and (sectoral) energy intensity complementarily. 
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B. Data preparation 

Mapping sectors 
To combine different data sources in our analysis, we map several classifications of manufacturing sectors onto each other as shown in Table 6. We 

create 10 joint sectors for our analysis which are largely compatible with international classification schemes such as NACE (see last column). As 
energy consumption is our main dependent variable of interest, IEA sector classifications as described in 100 [100] build the basis for our sector 
mapping. IEA distinguishes between 10 manufacturing subsectors. Due to data availability limitations, we combine two subsectors and create a new 
category “Other”, arriving at 10 manufacturing subsectors.  

Table 6 
Sector Mapping  

No. Joint 
sector 
name 

IEA International Federation 
of Robotics 

China NBS OECD Stat NACE Federal 
Statistical 
Office 
Germany 

1 Foods Food and tobacco Food products and 
beverages, Tobacco 
products 

Food products, beverages, 
tobacco products, 

Food products, beverages 
and tobacco 

C10 – C12 WZ10-12 

2 Textiles Textile and leather Textiles, leather, wearing 
apparel 

Textiles, wearing apparel, 
leather and related products 

Textiles, textile products, 
leather and footwear 

C13 – C15 WZ13-15 

3 Wood Wood and wood products 
(excl. furniture) 

Wood and wood products 
(incl. furniture) 

Wood and products of wood and 
cork, except furniture; articles of 
straw and plaiting materials 

Wood and products of wood 
and cork (probably incl. 
furniture?) 

C16 WZ16 

4 Paper Paper, pulp and printing Paper and paper products Paper and paper products, 
printing and reproduction of 
recorded media 

Paper products and printing C17 – C18 WZ17-18 

5 Chemicals Chemical and 
petrochemical 

Plastic and chemical 
products, 
pharmaceuticals, 
cosmetics, unspecified 
chemical, petroleum 
products 

Chemicals and chemical 
products, medicines and 
chemical fibres 

Chemical and chemical 
products; Pharmaceuticals, 
medicinal chemical and 
botanical products 

C20 – C21 WZ20-21 

6 Non-Metal Non-metallic minerals Glass, ceramics, stone, 
mineral products n.e.c. 

Non-metallic mineral products Other non-mineral products C23 WZ23 

7 Metal Iron and steel, Non-ferrous 
metals 

Basic Metals, Metals 
unspecified 

Basic metals, non-ferrous metals Basic metals C24 WZ24 

8 Machinery Machinery Metal products (non- 
automotive), industrial 
machinery, electrical/ 
electronics 

Fabricated metal products, 
except machinery and 
equipment, computer, electronic 
and optical products, Electrical 
Machinery & Equipment, 
machinery and equipment n.e.c. 

Fabricated metal products, 
Computer, electronic and 
optical equipment; electrical 
equipment; machinery and 
equipment n.e.c. 

C25–C28 WZ25-28 

9 Transport Transport Automotive, other 
vehicles 

Motor vehicles, trailers and 
semi-trailers, other transport 
equipment 

Motor vehicles, trailers and 
semi-trailers, other 
transport equipment 

C29–C30 WZ29-30 

10 Other Industry not elsewhere 
specified (incl. 22: rubber, 
plastic products; 31: 
furniture; 32 other manuf. 
33 repair and installation of 
machinery and equipment, 

All other manufacturing 
sectors, rubber and plastic 
products without 
automotive parts 

Other manufacturing, Plastics, 
rubber and plastics products, 
Manufacture of furniture, 
Manufacture of Articles for 
Culture, Education, Arts and 
Crafts, Sport and Entertainment 
Activities 

Rubber and plastics, 
Manufacturing nec; repair 
and installation of 
machinery and equipment 

C22, C31, 
C32, 
(Misc.) 

WZ22 
WZ31 
WZ32 

Note:*NBS data is available in varying levels of granularity across sectors and time, several aggregations and decisions had to be made. For instance, manufacture of 
articles for education might be counted in paper & print in the NACE, while the similar category “manufacture of articles for culture, education and sports” is 
sometimes subsumed in “other” in China. **Our sector “Wood” excl. Furniture whereas International Federation of Robotics data includes furniture. ***IEA sector 
“Chemical and petrochemical” excludes petrochemical feedstocks and thus excludes rubber and plastics, rubber & plastics are incl. in "industry not elsewhere spec." 
****We exclude C19: Manufacture of coke and refined petroleum products from our analysis as energy data for these products is counted among “Energy Industries”. 
We excluded this category from our other data sources where possible, in the International Federation of Robotics data, however, category “Unspecified chemical, 
petroleum products” includes robots used in C19: Manufacture of coke and refined petroleum, thus number of robots is inflated in this category, roughly 25–50% of 
robots fall into the category “Unspecified chemical, petroleum products” each year. 

Constructing the index “degree of industry 4.0” 
To construct the index “degree of industry 4.0”, the values of I4.0 patent intensity and robot intensity are combined. Robot intensity, defined as the 

stock of industrial robots divided by real GVA, and I4.0 patent intensity, defined as the stock of industry 4.0 related patents divided by total stock of all 
patents are both standardised (mean = 0, normal distribution) for each observation (140) and added. For instance, industry sector “food” in 2006 has a 
standardised robot intensity of − 0.396 and standardised patent intensity of − 0.42, resulting in a degree of I4.0 of − 0.81. Due to standardisation, 
values can be below 0. 
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Table 7 shows the mean of the standardized degree of I4.0 of each sectors over time, ordered from lowest to highest degree of I4.0.  

Table 7 
mean degree of industry 4.0, calculated as the sum of standardized I4.0 patent and robot intensity  

Sector Mean degree of industry 4.0 (standardized) 

Chemicals − 1.2 
Wood − 1.06 
Non-Metal − 0.87 
Metal - 0.86 
Foods − 0.68 
Paper − 0.38 
Textiles − 0.30 
Transport 1.18 
Machinery 1.27 
Rubber, plastics and other manufacturing 2.73  

Accounting for price differences over the time span 
To account for changes in price levels over time in China, we use purchasing price indices for industrial producers (PPI) (preceding year = 100) 

available from the China NBS. We construct PPI for our ten-sector classification system by averaging the PPI levels of multiple sectors, which we had 
aggregated according to our sector mapping. We create chain linked PPI with base year 2003 (2003 = 100) [18]. As the PPI is only available from 2004 
onwards, we use the General Producer Price Index (not differentiated by sectors) for the years 2000–2002. We deflate our monetary variables: Value 
Added (at basic prices), R&D Expenditure and foreign investment by dividing the nominal annual value by the PPI to obtain deflated values. 

Pre-Analysis: Data validation & pre-tests 
We performed several checks to validate our data. We checked compatibility of our energy data from the IEA with Chinese NBS energy data. We 

checked correlation between OECD Input-Output data and Chinese Industry Sales value data. We looked at the distribution of the non-transformed 
variables (QQ-plots), outliers and checked for missing values. While we do not observe many “within wave missings” we are concerned with 
“whole-wave missings” [103] due to different time availabilities of data sources. We impute several data points as described in Table 2: Data. We 
checked the collinearity of variables through the variance inflation factor. Furthermore, we created scatter plots of each independent variable against 
the dependent variable to check for linearity of the relationship between the variables. 

C. Additional descriptive results 

Patents

Fig. 9. Patent applications over time, transnational database, Chinese State Intellectual Property Office database, by technology field; FELD 1 to 8 refer to the 8 
technology fields analysed in this study: big data and analytics, robotics and autonomous systems, cloud computing, the internet of things, artificial intelligence (AI), 
3D printing, digital security, and digital measuring tools and sensors. 

Regarding technology fields (Fig. 9), patent applications in all technology fields of industry 4.0 have increased since 2006 until 2015 with smaller 
dips for some technologies. From 2015, application numbers go down for Big Data and Digital Security, as well as briefly for Internet of Things, which 
however, remains the technology field with most applications over the time span. The group of 3D Printing, Robotics and Autonomous Systems and 
Cloud Computing patent applications develops steadily, albeit at a much lower size of applications than the other groups. The technology field 
“Artificial Intelligence” shows the most stable increase in application numbers in the past 10 years. 
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Fig. 10. Patent stock log transformed by manufacturing sector  

Regarding sectoral distribution of I4.0 patents (Fig. 10), patent stocks are concentrated in two sectors: machinery and “rubber, plastics and other 
manufacturing” while machinery also applies for more than twice as many patents than sector “rubber, plastics and other manufacturing”. Patent 
stocks are in the range of 400.000s at the end of the period while the maximum of patent stock in the rest of the sectors is 20.000 (transport sector). 
Within this group of low-patent sectors; transport, chemicals and metals have the largest patent stock over time, followed by food and textiles which 
experienced strong increases in stocks in the past 10 years. Non-metals, paper, and wood show declining or stagnating patent stocks. Overall, a 
decrease of patent stocks can be detected since 2017. 

Within sectors, the density of specific technologies (as a share of I4.0 patent stock in the sector) varies. Due to low individual technology and digital 
patent stocks in many sectors we only interpret these shares after 2015. We do not interpret the density in the wood and non-metallic minerals sector, 
as the total digital patent stock in the wood sector, for instance, is only 22 (45 in non-metallic minerals) in 2019 and there are as few as one patent 
applications for some technologies, so density cannot be interpreted. The share of 3D printing patents is largest in the sector chemicals (between 
approx. 30 and 40% of all digital patents). Big data patents’ share was largest in the textiles industry, making up about 60% of all digital patents in the 
textiles industry. Between 25 and 30% of the digital patents in machinery and transport are big data patents. Robotics and Autonomous Systems’ 
patents’ share is largest in Transport. There is a spike in the share of these patents in the wood sector in the last 5 years. Cloud computing patents’ share 
is largest in textiles and transport with an increasing share in several industries over the past 5 years. IoT patents’ density was largest in the rubber and 
other manufacturing sector over the time (almost 70% in 2015) period, followed by machinery, paper and textiles. IoT patents are the largest 
technology group of machinery’s patents but experience an (almost) steady decline in share of I4.0 patents since 2000 (made up 60% today roughly 
40%). The decreasing share can also be detected in other sectors, except for textiles. AI patents’ share is largest in machinery and transport. AI patents’ 
share was below 12,5% for all industries but there is an increasing tendency in recent years. Digital Security patents’ share is largest in machinery. 
Measuring, testing, sensor technology patents’ share is between 50 and 70% for metals, food, chemicals. 
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Robots 
Fig. 11 shows the development of robot stock in manufacturing sectors. Among the sectors with comparatively little robot use, the sector “rubber, 

plastics and other manufacturing” has the highest robot stock, followed by metals and food. The sectors “textiles”, “wood” and “paper” exhibit very 
low robot stock rates over the entire time period.

Fig. 11. Robot stock in manufacturing sectors  

D. Regression models with split time span  

Model 5 Up to 2011 After 2011 

I4.0degree − 0.014 0.011 
(0.063) (0.016) 

ln(RVA) 0.242* 0.017 
(0.098) (0.116) 

ln(realRD2) 0.065 − 0.027 
(0.046) (0.046) 

ln(trade_int) 0.037** 0.006 
(0.013) (0.024) 

ln(PPIener) − 0.092 0.177 
(0.162) (0.178) 

ln(realforeign) 0.182 0.220 
(0.117) (0.132) 

ln(CO2imp) 0.086 − 0.117 
(0.084) (0.087) 

Num.Obs. 60 80 
R2 0.779 0.327 
R2 Adj. 0.697 0.156 
AIC 164.3 249.4 
BIC 181.1 268.5 
RMSE 0.06 0.07 
Std.Errors HC3 HC3 

Note: Dependent variable: Ln(energy), independent variables: levels, 
fixed effects model with sector fixed effects; + p < 0.1, *p < 0.05, **p <
0.01, ***p < 0.001. 
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Model 6 Up to 2011 After 2011 

I4.0degree − 0.030 − 0.028 
(0.051) (0.021) 

ln(RD_int) 0.140* − 0.013 
(0.053) (0.076) 

ln(trade_int) 0.037** − 0.023 
(0.013) (0.028) 

PPIener − 0.359*** 0.135 
(0.072) (0.108) 

ln(foreign_int) 0.450*** 0.812*** 
(0.110) (0.110) 

ln(CO2imp_int) 0.245*** 0.034 
(0.068) (0.070) 

Num.Obs. 60 80 
R2 0.909 0.769 
R2 Adj. 0.878 0.715 
AIC − 23.9 − 14.7 
BIC − 9.2 2.0 
RMSE 0.06 0.09 
Std.Errors HC3 HC3 

Note: Dependent variable: ln(energy), independent variables: levels, fixed 
effects model with sector fixed effects; + p < 0.1, *p < 0.05, **p < 0.01, 
***p < 0.001. 
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