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• A high resolution (national scale) multi- 
model intercomparison study was 
applied. 

• The models show room for improvement 
predicting O3 at night and MDA8 O3 >

120 μg m3. 
• To evaluate the ozone sensitivity to 

temperature a new metric was 
developed. 

• A large spread was found between the 
CTMs for the ozone sensitivity to 
temperature.  
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A B S T R A C T   

Simulating the ozone variability at regional scales using chemistry transport models (CTMs) remains a challenge. 
We designed a multi-model intercomparison to evaluate, for the first time, four regional CTMs on a national scale 
for Germany. Simulations were conducted with LOTOS-EUROS, REM-CALGRID, COSMO-MUSCAT and WRF- 
Chem for January 1st to December 31st, 2019, using prescribed emission information. In general, all models 
show good performance in the operational evaluation with average temporal correlations of MDA8 O3 in the 
range of 0.77–0.87 and RMSE values between 16.3 μg m− 3 and 20.6 μg m− 3. On average, better models’ skill has 
been observed for rural background stations than for the urban background stations as well as for springtime 
compared to summertime. Our study confirms that the ensemble mean provides a better model-measurement 
agreement than individual models. All models capture the larger local photochemical production in summer 
compared to springtime and observed differences between the urban and the rural background. We introduce a 
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new indicator to evaluate the dynamic response of ozone to temperature. During summertime a large ensemble 
spread in the ozone sensitivities to temperature is found with (on average) an underestimation of the ozone 
sensitivity to temperature, which can be linked to a systematic underestimation of mid-level ozone concentra
tions. During springtime we observed an ozone episode that is not covered by the models which is likely due to 
deficiencies in the representation of background ozone in the models. We recommend to focus on a diagnostic 
evaluation aimed at the model descriptions for biogenic emissions and dry deposition as a follow up and to repeat 
the operational and dynamic analysis for longer timeframes.   

1. Introduction 

Ozone (O3) remains one of the most toxic and ecologically detri
mental air pollutants in Europe. Alongside particulate matter and ni
trogen oxides, exposure to ozone causes a substantial burden of diseases 
in Germany (e.g., Krug et al., 2019, 2020). Millions of people are 
exposed to ozone levels above the WHO guideline values (EEA, 2018). 
Ozone is not emitted but rather formed through complex chemical re
actions in the atmosphere. Processes influencing ozone in the tropo
sphere act over a range of spatial scales, from the global scale (Crutzen, 
1973), through the regional scale (Schnell et al., 2015), down to the 
urban scale (Churkina et al., 2017). Ozone at a given location consists of 
the transported baseline concentration and the local production (Parrish 
et al., 2017; Derwent et al., 2018). The oxidation of methane in the 
remote troposphere and the subsequent long-range transport of 
remotely produced ozone into Europe contributes to about one third of 
the annual average baseline ozone concentration over Europe (Butler 
et al., 2020). The long-range contribution to the background is strongest 
in spring, while the local production is strongest in summer (HTAP, 
2010). High local ozone concentrations associated with ozone threshold 
exceedance episodes are primarily attributable to regionally emitted 
ozone precursors (e.g., Reidmiller et al., 2009; Huang et al., 2017; 
Jonson et al., 2018; Lupaşcu and Butler, 2019; Lupaşcu et al., 2022). 

The regional buildup of ozone is highly sensitive to several meteo
rological parameters such as temperature, moisture, and solar radiation 
and has been documented in numerous scientific studies based on both 
measurements and modeling (e.g., Seo et al., 2014; Coates et al., 2016; 
Kavassalis and Murphy, 2017; Otero et al., 2016, 2018; Luo et al., 2020). 
The synoptic state, such as high-pressure systems and/or blocking con
ditions, can boost the formation of ozone over a period of several days 
(Black et al., 2004). Biogenic volatile organic compound (BVOC) emis
sions are highly temperature dependent (Jacob and Winner, 2009; 
Monks et al., 2015) and correlate to clear sky conditions (Guenther et al., 
2006, 2012). Their largest impact on ozone formation can be observed 
on warm and cloud-free days (Tawfik and Steiner, 2013) as photolysis is 
another crucial factor. Under high nitrogen oxide (NOX) conditions the 
photochemical formation of ozone is enhanced with strong solar radia
tion (Kleinman, 1994), especially during summer when the solar inso
lation is at its largest (Schaap et al., 2015; Bessagnet et al., 2016). The 
photolysis of ozone can also act as a sink for ozone, for example in the 
remote marine boundary layer where NOX concentrations are low 
(Oltmans and Levy, 1994). In high NOX and low NMVOC (non-methane 
volatile organic compounds) conditions, the same occurs through the 
production of OH and subsequent reaction with nitrogen dioxide (NO2). 
Vegetation is also an important sink of ozone through dry deposition. 
High temperatures along with low humidity cause plants to close their 
stomata to conserve water. This reduces the ozone removal (Fowler 
et al., 2009; Kavassalis and Murphy, 2017). A similar correlation was 
mentioned by Lin et al. (2020) for low soil moisture content when plants 
will tend to conserve water. Such a reduction in ozone dry deposition 
due to vegetative water stress can often be observed during extended 
episodes of high ozone levels related to heatwaves and droughts (Lin 
et al., 2020). Churkina et al. (2017) emphasized the role of enhanced 
precursor emissions such as VOCs and the removal effect of vegetation 
during heatwaves. Many of the chemical reactions involved in the pro
duction of ozone are also faster at higher temperatures (e.g., Sillman, 

1995; Atkinson, 2007; Fischer et al., 2014; Coates et al., 2016). 
Extensive modeling efforts are required to encompass ozone forma

tion and removal processes with a sufficient high-quality representation 
notably observed for intense episodes. To hindcast and forecast the 
ambient air pollution of ozone at all scales, a hierarchy of numerical 
models is commonly used, consisting of global models (e.g., Young et al., 
2018), regional models (e.g., Colette et al., 2017), and depending on the 
application, urban models (e.g., Maronga et al., 2019). Nowadays, it is 
common practice to conduct modeling frameworks using a multi-model 
(ensemble) approach with unified input data (emissions and/or mete
orology) as done for example in the Copernicus Atmosphere Monitoring 
Service (CAMS). Results of an ensemble are often more robust compared 
to a single simulation and can increase the validity of the model results 
(Colette et al., 2017; Chen et al., 2019). Numerous model intercom
parison studies for ozone have been performed on both global and 
regional scales (e.g., Rao et al., 2011; Foley et al., 2015a, 2015b; Bes
sagnet et al., 2016; Colette et al., 2017; Galmarini et al., 2017; Otero 
et al., 2018; Chen et al., 2019). The response of ozone to a uniform 
changing emission dataset has been studied in the HTAP framework 
(e.g., Galmarini et al., 2017; Jonson et al., 2018). Model performance 
assessments and the evaluation of model processes have been performed 
within the inter-comparison studies of ACCMIP (e.g., Stevenson et al., 
2013; Lamarque et al., 2013) and CCMI (e.g., Morgenstern et al., 2017; 
Dhomse et al., 2018) for the global scale. The AQMEII (e.g., Rao et al., 
2011; Solazzo and Galmarini, 2016; Galmarini et al., 2017), CAMS (e.g., 
Flemming et al., 2017; Inness et al., 2019) and EURODELTA (e.g., 
Colette et al., 2017) frameworks can be mentioned as examples for 
regional model evaluations. Within CAMS the needs for the develop
ment of regional air quality modeling aspects have been developed and 
described in detail. The CAMS_61 service provides information on how 
to handle daily forecasts and hindcasts using multi-model (ensemble) 
simulations. Only a few studies for air quality benchmarking on a na
tional level have been reported so far. 

The quality of model (ensemble) simulations in the past has pre
dominantly been assessed by determining the model errors with respect 
to in-situ measurements using the operational evaluation. This can be 
done using different model quality indicators, such as those provided by 
the FAIRMODE initiative (Forum for AIR quality MODeling in Europe, 
https://fairmode.jrc.ec.europa.eu/). To assess the model errors in more 
detail, the dynamic (model) evaluation can be used (e.g., Dennis et al., 
2010; Lecœur and Seigneur, 2013; Henneman et al., 2017). The dynamic 
evaluation allows a quality assessment of model simulations, based on 
the analysis of the relationship between air pollutants and different 
input drivers, such as emissions and/or meteorology. While the opera
tional model evaluation compares the absolute modeled concentration 
to measurements, the dynamic evaluation is based on the comparison of 
changes in modeled and observed concentration levels (Dennis et al., 
2010; Lecœur and Seigneur, 2013). This assesses whether the models can 
capture changes in concentrations related to different meteorological 
conditions or emission changes (Dennis et al., 2010). Modeled and 
observed sensitivities to different processes can further be diagnosed 
(Dennis et al., 2010; Henneman et al., 2017). Ozone metrics can be 
correlated with meteorological parameters as shown in previous studies 
(e.g., Lecœur and Seigneur, 2013; Otero et al., 2016, 2018). In Lecœur 
and Seigneur (2013), correlations were estimated for chemistry trans
port model simulations of particulate matter related to temperature, 
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precipitation, and wind speed and their 0 to 10 subsequent days. In 
Otero et al. (2016, 2018), a multiple linear regression analysis for 
different meteorological conditions was applied to estimate their rele
vance for ozone. Otero et al. (2016) also indicate the correlation of 
probabilistic threshold exceedances and estimates the meteorological 
impact to ozone extreme values. 

In this study we (1) perform a model inter-comparison study with 
uniform input data (notably emissions and meteorology) to (2) assess 
the model quality on the regional (national) scale for Germany in 2019, 
by (3) a combined approach of the operational and the dynamic eval
uation, aiming (4) to examine model specific behavior as a function of 
meteorology. In Section 2, we describe the experimental design of the 
model inter-comparison study, give information on all four models 
applied and the framework used for the operational and the dynamic 
evaluation. In Section 3 the results are provided, discussed and put in a 
broader perspective. In Section 4 the conclusion is presented. 

2. Description of models and experimental design 

2.1. Participating models 

In the context of this study four Eulerian chemistry transport 
models have been evaluated and compared: LOTOS-EUROS, REM- 
CALGRID, COSMO-MUSCAT and WRF-Chem (Table 1). All models are 
designed as regional-scale, limited-area models to perform air quality 
assessments on short- and long timescales in the lower troposphere and 
can be used for process studies in scientific research activities as well as 
for regulatory efforts and policy advice. All models applied have pre
viously participated in several model inter-comparison studies, such as 
EURODELTA (Colette et al., 2017) and/or AQMEII (Solazzo et al., 
2012; Im et al., 2015a, 2015b), in which the performance of the models 
have been assessed to its peers. The models are also widely used for 
ozone applications (e.g., Flemming and Stern, 2007; Mar et al., 2016; 
Escudero et al., 2019). The models differ in their complexity with 
respect to chemical formation processes, vertical layering and espe
cially in their meteorological driving. We employed two offline 
(LOTOS-EUROS & REM-CALGRID) and two online models (COSMO- 
MUSCAT & WRF-Chem). Characteristics relevant for the model’s ozone 
prediction are summarized in Table 1. For a complete description with 
application examples of the models we refer to the key references given 
in the tables. 

2.2. Experimental design 

To guarantee the comparability of the results as much as possible, an 
intercomparison protocol was developed to harmonize anthropogenic 
emissions, meteorological input data, boundary conditions, model do
mains and resolutions as far as possible. The simulations were conducted 
for the year 2019 over a domain encompassing Germany (Fig. 1, upper 
panel). Each model simulation has been performed in a nested approach 
with the outer domain covering Europe. The outer model domain has 
been employed to encompass the impacts of long-range transport on air 
quality in Germany. The target domain over Germany is defined by a 
regular longitude-latitude grid with a spatial resolution of approxi
mately 2 × 2 km2 and also covers parts of the neighboring countries, e. 
g., the Netherlands, Belgium, Luxembourg, and Poland. We allow all 
models to freely select the number of required intermediate nested grids. 
By doing so, the expert knowledge for each model system could be used 
to represent the air quality in the most accurate manner. Note that, the 
model simulations for the inner nest are performed either with a grid 
definition matching or with a native grid definition close to the target 
grid, with all modeled concentrations harmonized to the target 2 × 2 
km2 grid for the purposes of intercomparison. 

The model simulations were driven by meteorological input data 
provided by the German Weather Service (Deutscher Wetterdienst, 
DWD, e.g., Reinert et al. (2016)). For the large-scale European 

simulation, the ICON-EU meteorology with a horizontal resolution of 
about 7 × 7 km2 was selected. Over Germany, the higher-resolved 
COSMO-D2 model (~2.2 km2) has been applied. With the operational 
setup, the DWD provides 60 vertical layers for ICON-EU and 65 for 
COSMO-D2. The offline models (LOTOS-EUROS & REM-CALGRID) 
directly make use of these meteorological datasets as 1-hourly input 
for their chemical transport modeling. WRF-Chem and COSMO- 
MUSCAT (both online models) use their own methods for further pro
cessing the meteorological information according to the needs of their 
model specifics. For WRF-Chem and COSMO-MUSCAT, the meteorology 
is simulated as a hindcast itself, driven by initial and boundary condi
tions of the DWD models. To stay close to the DWD product, the model 
simulations are re-/initialized every 24–72 h. Aside from the reinitiali
zation of meteorological input fields, WRF-Chem and COSMO-MUSCAT 
also nudge the 3-D meteorological fields of winds, potential tempera
ture, water vapor mixing ratio, and geopotential every hour to ensure 
that the fields are not largely diverging from the DWD models. 

For Germany, the officially reported anthropogenic emissions were 
provided by the German Environment Agency (Umweltbundesamt, 
UBA, www.uba.de) for all participating models individually, gridded 
using the GRETA system (Gridding Emission Tool for ArcGIS, Schneider 
et al. (2016)). For the rest of Europe, the regional inventory of CAMS for 
2018 (CAMS-REG, Kuenen et al. (2022)) was used. The sector classifi
cation for both emission inventories follow the Gridded Nomenclature 
for Reporting (GNFR). The breakdown of the GNFR sector F (road 
transport) in GRETA towards the sub-categories F1-F4 is based on a 
factor split derived from CAMS-REG (Table 2). Area sources from 
GRETA’s GNFR sectors A, B, D, J, and H have been vertically distributed 
by using the height profile presented in Table 3. All remaining area 
sources were to be emitted into the lowest model layers. Point sources 
from GRETA were vertically distributed using the height information 
that comes with the product. Profiles for the CAMS-recommended 
height distribution for point and area sources were adjusted by each 
model group individually on the corresponding grids of the outer nests. 
For all sectors, the emission time profiles were set to the CAMS temporal 
profiles to account for the hourly evolution from their emitting activity 
sectors. For road transport (GNFR sector F) the direct NO2 emission 
percentage was set to 20 %. All other NOX emission sources are 
distributed with a 97 % to 3 % (NO to NO2) ratio. The composition of PM 
and NMVOCs corresponds to CAMS-REG and has been adjusted to the 
chemical mechanism of the respective models. 

The land use classification is based on the EU-wide Corine Land 
Cover (CLC) dataset for 2018 (EEA, 2021). Over Germany, the dataset of 
the Federal Agency for Cartography and Geodesy (BKG, https://mis.bkg. 
bund.de) with a finer resolution of 5 ha was used. Global reanalysis data 
(ECMWF Atmospheric Composition Reanalysis 4: EAC4) of CAMS were 
used as boundary conditions around the outer European domain 
including the model top (Inness et al., 2019). The EAC4 data are based 
on global chemistry transport calculations in a horizontal resolution of 
0.75◦ and are available in time steps of 3 h. 

2.3. Evaluation metrics and measurement data 

The modeling results were sampled for locations of the monitoring 
network from the German Environment Agency and the German federal 
states, as available in the central database at UBA. Based on the 2 × 2 
km2 mesh size of the target grid resolution, we only incorporated 
background sites (urban, suburban, and rural) into the model perfor
mance evaluation. Sites located above 900 m were excluded from the 
analysis. In total, 238/247 (O3/NO2) measurement sites were included 
(Fig. 1). The classification into urban (93/108), suburban (72/71), and 
rural (73/68) background sites was used to discriminate between more 
and less polluted areas in Germany. The distinction between rural and 
urban sites is used to consider any (potential) titration effects and pro
vides information on the modeled ozone production efficiency, which 
may vary considerably with the location and timing of NOX emissions. 
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Table 1 
Description of basic structures, schemes and relevant parameters of the four participating models.   

LOTOS-EUROS REM-CALGRID COSMO-MUSCAT WRF-Chem 

MODEL OVERVIEW 

Key references Manders et al. (2017) Stern (2003) Wolke et al. (2012) Grell et al. (2005); Fast et al. (2006) 
Version 2.2.002 4.0 5.05–02 3.9.1 
Research group TNO IVU Umwelt TROPOS RIFS 
Two-way feedback Offline Offline Online Online  

INTERNAL MODEL GRID STRUCTURE 

Nesting & 
horizontal 
resolution 

3 domains (28 × 32 km2; 7 × 8 km2;  
2 × 2 km2) 

3 domains (28 × 32 km2; 7 × 8 km2; 2 × 2 km2) 2 domains (14 × 14 km2; 2 × 2 km2) 3 domains (30 × 30 km2; 10 × 10 km2;  
2 × 2 km2) 

Vertical layers 13 10/8 40/65 38 
Vertical extent 8,000/4,000 m (7/10 layers  

below 1500 m) 
3,000 m (8 layers below 1300 m) 8,000 m (MUSCAT: 11/20 layers below 1000 m) 20,000 m (11 layers below 1300 m) 

Depth of first layer 20 m 20 m 20 m 25 m  

INPUT DATA (HARMONIZED) 

Meteorology ICON-EU & COSMO-D2 (both DWD) 
Emissions German Environment Agency (UBA) for Germany & CAMS-REG (Kuenen et al., 2022) for Europe 
Boundary 

conditions 
CAMS-EAC4 (Inness et al., 2019) 

Land use Corine Land Cover 2018 (EEA, 2021) & the 5-ha dataset of the Federal Agency for Cartography and Geodesy (BKG)  

MODEL PROCESSES 

Advection Based on Walcek (2000) Based on Walcek (2000), modified by Yamartino (2003) Based on Hundsdorfer et al. (1995); Wolke and Knoth 
(2000); Schlegel et al. (2012) 

Third-order Runge–Kutta time-integration  
(Skamarock et al., 2008) 

Vertical diffusion Kz-theory, with Kz values calculated in 
the stability parameterization 

Based on K-theory Provided online by COSMO Vertical turbulent mixing calculated online 

Dry deposition DEPAC (Van Zanten et al., 2010) DEPAC (Van Zanten et al., 2010) Based on Seinfeld and Pandis (2006); Schlünzen et al. 
(2012) 

Based on Wesely (1989) 

Wet deposition Banzhaf et al. (2012) Simple wash-out approach, scavenging rates are calculated from 
temperature- and species-dependent Henry’s Law solubility and 
rainfall rate 

Based on Simpson et al. (2012) Based on Neu and Prather (2012) 

Gas phase chemistry CBM-IV (Gery et al., 1989) with 38 
species and 96 reactions 

CBM-IV (Gery et al., 1989) with 36 species and 93 reactions RACM-MIM2-ext (Stockwell et al., 1997; Karl et al., 
2006; Luttkus et al., 2022) with 140 species and 335 
reactions 

MOZART4 (Emmons et al., 2010) with 140 
species and 335 reactions 

Cloud chemistry ph dependent oxidation scheme No explicit cloud chemistry, simple parameterization of sulfate 
oxidation in clouds 

Based on Schaap et al. (2004) Double microphysics scheme (Morrison and 
Gettelman, 2008) 

Photolysis Computed offline with the solar-zenith 
angle and adjusted online by clouds 

Offline computed clear sky rates based on the TUV radiative transfer 
model, online modified by cloud cover from the meteorological 
driver 

Computed offline with the solar-zenith angle and 
adjusted online by clouds 

Provided online based on clear-sky rates as 
function of solar-zenith angle and cloud shading 
factors 

Biogenic emissions Similar to Steinbrecher et al. (2009) Based on Simpson et al. (1995, 1999) Based on Steinbrecher et al. (2009) Based on Guenther et al. (2006) 
SOA formation Not included here SORGAM (Schell et al., 2001) Based on Schrödner et al. (2014); Luttkus et al. (2022) Based on Knote et al. (2014) 
Sea salt emissions Based on Monahan (1986); Mårtensson 

et al. (2003) 
Based on Monahan (1986); Gong et al. (1997a, 1997b) Based on Long et al. (2011); Sofiev et al. (2011) Based on Monahan (1986); Gong et al. (1997a, 

1997b); O’Dowd et al. (1997)  
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Fig. 1. Annual averaged MDA8 O3 over Germany for LOTOS-EUROS (a), REM-CALGRID (b), COSMO-MUSCAT (c) and WRF-Chem (d). Measured concentrations of 
the urban (square), suburban (triangle) and rural (circle) background are shown on top. A regression analysis compares the modeled and the measured concen
trations and is shown below the maps for each model (f-i). The ensemble mean of all models is shown in subplots (e) and (j). 
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Annual mean concentration maps were created to illustrate differ
ences in the spatial distribution between all models. A regression anal
ysis was performed to quantify the spatial correlation with 
measurements. Besides the evaluation of the spatial distribution, we 
generated time series for all stations from which we show selected sites 
in rural (Westerland: DEUB001), suburban (Augsburg: DEBY099) and 
urban (Berlin: DEBE034) locations as well as for all monitoring sites 
averaged. Time series of the daily mean and the mean values of the daily 
maximum 8-hour average (MDA8) for ozone provide more insight into 
the synoptic variability. Difference plots address the specific dissimi
larities between the individual model simulations. By analyzing average 
weekly and daily variations, the meteorological impact can be largely 
removed, and the effect of anthropogenic emissions is emphasized. We 
therefore calculated average diurnal cycles for all days of the week. For 
ozone we distinguished between the growing season (April–September) 
and the winter period (January–March & October–December). We 
further subdivided the growing season into April–June and July–Sep
tember, as it was anticipated that during the April–June period ozone 
concentrations are predominantly affected by long-range transport, 
while from July to September the local photochemical production plays 
a more important role (Otero et al., 2018; Butler et al., 2020). 

We calculated an ensemble mean from the four models to verify 
possible benefits when using a simple poor man’s ensemble approach. 
The performance between the individual model members can thus be 
compared against each other and to this ensemble mean. To evaluate the 
capability of the ensemble to represent different concentration regimes 
for ozone, we grouped the MDA8 O3 into discrete bins based on 
concentration. 

A wide range of statistical indicators were computed to benchmark 
the model performance. We used mean bias (MB), root mean squared 
error (RMSE), index of agreement (IOA) and correlation coefficient (R) 
(see supplementary material). Due to the large number of stations, we 
calculated average statistics over all sites. Exceedances of the calculated 
values of the 120 μg m− 3 EU long-term target value for MDA8 O3 have 
been investigated as well. All four models were evaluated on their ability 
to capture the observed threshold exceedances using time series and 
statistics. We scored the models on their rate of false alarms (FA), missed 
alarms (MA), good values below (GA− ), and good values above (GA+) 
the threshold for MDA8 O3 of 120 μg m− 3. In an ideal case, the number 
of false and missed alarms is small compared to the number of good 
values below and above the threshold. We provide the probability of 
detection (POD) and the success ratio (SR), that is “comparing the 
(correct) modeled alerts with the (observed) alerts and the (correct) 
modeled alerts with (all) alerts issued by the model”, respectively 
(Janssen and Thunis, 2022). 

We made use of the air quality modeling benchmarking indicators 
provided by the FAIRMODE initiative (Janssen and Thunis, 2022). In 
FAIRMODE, scientific model assessment methods are combined and 
harmonized using modeling quality indicators (MQIs) and modeling 
performance indicators (MPIs). All indicators are based on the uncer
tainty of measurements for each pollutant (RMSU). Note, that the 
calculation of the RMSU differs for time series and annual averaged 
values. The MQIs are calculated using the ratio between the model error 
and the RMSU, scaled by a factor β = 2, so that the differences between 
modeled results and observations are allowed to be twice as large as the 
RMSU. To emphasize further needs for model improvements we make 
use of the MPIs that are related to the temporal variation in terms of 
correlation (MPIR), bias (MPIBias), standard deviation (MPIσ) and high 
percentile values (MPIPerc). In FAIRMODE the 92.9th percentile of the 
MDA8 O3 is used to calculate the MPIPerc. Similar to ozone, the MPIPerc is 
assessed for nitrogen dioxide that equals the 19th occurrence in 8760 h 
(99.8th percentile). In FAIRMODE, defined modeling quality objectives 
(MQO) and modeling performance criteria (MPC) are being used to 
indicate the limits of applicability of a modeling approach. The MQO 
and the MQC are fulfilled when the 90th percentile value of corre
sponding MQI and MPI values are ≤ 1. For a more detailed description of 
all indicators, the objective and criteria we refer to Janssen and Thunis 
(2022). The calculation of all indicators applied in this study is given in 
the supplementary material. 

We further assessed the quality of all four models and the ensemble 
using a dynamic (model) evaluation. The MDA8 for ozone has been used 
for this evaluation. We classified the prevailing weather conditions by 
categorizing the meteorological parameters into discrete bins. Similar 
straightforward methods of clustering meteorological conditions to 
determine the accumulation of air pollutants have also been applied in 
previous research activities (e.g., van Pinxteren et al., 2019; Thürkow 
et al., 2021). The MDA8 for ozone was assigned to each of these discrete 
classes. As a measure for the meteorological conditions, we selected the 
daytime maximum temperature (Tmax) and the corresponding humidity 
at 2 m altitude (RH@Tmax). We used the DWD COSMO-D2 forecasts as a 
proxy for observations, as they were applied as input dataset to all four 
individual models. For statistical robustness we require for each bin that 
the number count of the observations is larger than the number of sta
tions being used. We further tried to quantify the relationship between 
temperature and MDA8 O3 by a very basic calculation. For this, the 
average mean MDA8 O3 values of the binned temperature clusters for 
(Tmax = 30 to 32 ◦C) and (Tmax = 20 to 22 ◦C) were subtracted from each 
other and divided by the 10 ◦C temperature difference between these 
bins. We performed the dynamic evaluation for urban and rural sites as 
well as for different periods of the year separately as described above. 

3. Results and discussions 

3.1. Spatial distribution 

Fig. 1 shows maps of the annual averaged MDA8 O3 over Germany, 
for all models and the measured background concentration. A regression 
analysis compares the modeled and the measured concentrations and is 
shown below the maps for each model. The ensemble mean is presented 
aside. In Fig. 2 the same information as in Fig. 1 is given for the nitrogen 
dioxide concentration. 

The spatial ozone distribution calculated by all models shows a very 
similar pattern (Fig. 1). Largest concentrations in Germany are found in 
the rural background, including a clear signal of the orography. Here, we 

Table 2 
Breakdown of the GNFR sector F (GRETA) into the transport sub-categories F1 to 
F4 (CAMS-REG) [fraction of the total].   

F1 (exhaust- 
gasoline) 

F2 (exhaust- 
diesel) 

F3 (exhaust- 
LPG) 

F4 (non- 
exhaust) 

CO  0.75  0.24  0.01  0.00 
CO2  0.33  0.66  0.01  0.00 
NH3  0.74  0.20  0.05  0.00 
NMVOC  0.58  0.16  0.03  0.23 
NOX  0.03  0.97  0.00  0.00 
PM10  0.05  0.20  0.00  0.75 
PM25  0.07  0.31  0.00  0.62 
SO2  0.30  0.70  0.00  0.00  

Table 3 
Height distribution [m] of area sources for GRETA (A: Public power; B: Industry; D: Fugitive; H: Aviation; J: Waste).   

0–20 20–92 92–184 184–324 324–522 522–781 781–1106 

H  0.25  0.25  0.1  0.1  0.1  0.1  0.1 
A, B, D, J  0.1  0.8  0.1  0  0  0  0  
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Fig. 2. Same as in Fig. 1 with information given for the nitrogen dioxide concentration.  
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found for all four models the well-known elevated ozone concentration 
pattern in the Alps. The lowest values are found in and near NOX source 
regions, like the Main-Rhein area, the Ruhr area as well as the larger 
cities like Berlin, Hamburg, Bremen, and Munich. These minima are due 
to the well-known titration of ozone by nitrogen monoxide. All models 
show increased ozone levels above the sea, consistent with a smaller dry 
deposition sink in comparison to land areas. 

The regression analysis for ozone summarizes the average model- 
measurement comparison indicating different fit slopes for the partici
pating models (Fig. 1). All models overestimate the measured MDA8 O3 
levels on annual average in the German background for rural, suburban 
and urban areas. Systematic differences among the model participants 
become obvious in the rural background, over the large cities, the sea, 
and the Alps. The model members differ mainly in terms of the differ
entiation between urban and rural regions, with the largest absolute 
mean bias seen for urban areas. This corresponds with larger fraction 
errors in the urban background than in the rural background. Rural 
regions show an overall larger model-measurement agreement. In 
addition, the spatial pattern varies between the models, e.g., over the 
sea, at higher elevations, and with respect to the gradient between 
northern and southern Germany. 

Modeled distributions for nitrogen dioxide clearly show the same 
pattern as the input emissions due to its short lifetime in the atmosphere 
(Fig. 2). All major cities and highways can be seen in the annual dis
tribution. Most models show an average negative bias for the nitrogen 
dioxide background concentration. In the urban background larger 

variations can be recognized for all model participants compared to the 
rural area. 

3.2. Temporal analysis 

Fig. 3 shows daily time series of the MDA8 O3, for the models and 
measured ozone as average at all background monitoring sites in Ger
many. The difference for each model against the measured concentra
tion is presented in the lower panel. In Fig. 4 we classified the MDA8 for 
ozone for observed discrete bins of 20 μg m− 3 to investigate how well the 
models can reproduce different ozone concentration regimes. Daily 
mean time series for three example sites (Westerland, Augsburg and 
Berlin) are presented in Fig. 5. 

The time series (Fig. 3 & Fig. 5) show that the highest ozone levels in 
2019 were measured for a few single days in June and two episodes in 
the second half of July and at the end of August. The dynamic range 
across the year of the simulated ozone concentration differs between the 
models, as the ordering of the model systems changes from season to 
season (Fig. 3 & Fig. 4). Fig. 4 shows that the MDA8 O3 of about 80–120 
μg m− 3 in summer and about 40–80 μg m− 3 in winter are captured well 
by the models. Observed concentration bins of the MDA8 for ozone are 
overestimated by the models below 80 μg m− 3 in summer. For winter, 
the models are biased high for concentration bins of the MDA8 O3 below 
40 μg m− 3 and biased low for MDA8 O3 above 80 μg m− 3. 

We also found that the models capture MDA8 O3 values above 120 
μg m− 3 during summer and fall to a fairly large extent (Fig. 3 & Fig. 4). 

Fig. 3. Time series (a) of the MDA8 O3 for LOTOS-EUROS (yellow), REM-CALGRID (magenta), COSMO-MUSCAT (purple), WRF-Chem (blue) and the ensemble mean 
(green). Plotted values reflect the average background concentration of all available monitoring sites in Germany. Measured concentrations are indicated with black 
circles. The difference for each model and the ensemble mean to the measured concentration is shown in subplot (b). Exceedances above the MDA8 O3 target value of 
120 μg m− 3 are indicated with red dots. 
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However, on average, the model ensemble underestimates the MDA8 for 
ozone above the 120 μg m− 3 air quality target threshold. Especially, the 
observed high ozone levels during the end of April are not captured by 
any of the model participants (Fig. 3). Inspection of the individual 
example sites further reveals model specific features (Fig. 5). We found 
that all four models can represent the conditions present in coastal areas 
for example in the German location of Westerland. Ozone background 
concentrations for large agglomerations like in Berlin and for suburban 
areas in middle-sized cities represented by the station Augsburg can be 
captured as well. 

As the MDA8 O3 is thought to be rather insensitive to titration re
gimes the analysis of the diurnal behavior provides additional infor
mation on the ozone concentration itself. In Fig. 6 the day of the week 
cycles for modeled ozone and the measured levels are shown for rural 
and urban background sites and in Fig. 7 the same information is pre
sented for nitrogen dioxide. All models reproduce the early morning 
ozone minimum at the same time and the increase of ozone levels at a 
similar rate afterwards (Fig. 6). We also found that the models capture 
the morning and the evening daytime maxima for nitrogen dioxide 
concentrations (Fig. 7). However, the timing of the daytime ozone 
maximum between the models can be slightly shifted. We also found 
that the modeled absolute concentrations largely differ between the 
model groups. All models hardly capture the low ozone levels at night in 
summer and winter. Especially in the urban background, the models do 
not decrease as far and overestimate the ozone levels up to 20 μg m− 3 

during the night. LOTOS-EUROS shows the deepest nighttime dips, 
which could be related to larger NO2 concentrations at night. 

We also found on average better model-measurement agreement 
during the growing season than in winter. Especially in July–September 

the results largely vary between the ensemble members, with the models 
sometimes showing better agreement and sometimes not. During the 
middle of the day, the nitrogen dioxide levels are often underestimated 
by all models. The models slightly tend to overestimate the afternoon 
maxima of NO2 in rural areas and in the urban background at weekends. 
LOTOS-EUROS shows too pronounced morning daytime maxima for 
NO2. In winter the treatment of stability and the titration of NO play a 
key role and still remain difficult. REM-CALGRID converts NO2 cycles 
rather well except for rural background areas during the winter season, 
where the model substantially differs from the model ensemble. 

Simulated ground-level ozone has already been shown to be sensitive 
to the model representation of the local production which can be 
influenced e.g., by vertical mixing processes in the free troposphere and 
the planetary boundary layer (Jang et al., 1995; Hogrefe et al., 2018). In 
addition, the ozone simulated by regional models can be affected by 
long-range transport and thus can be highly sensitive to the choice of 
chemical boundary conditions. The concentrations predicted for the 
outer domain act as boundary conditions and also impact the inflow of 
ozone through the edges of the inner model domain(s) (Colette et al., 
2017; Im et al., 2018). The information on causes for (high) ozone ep
isodes can be obtained from simulations that account for the attribution 
of different source sectors and source regions (e.g., Pay et al., 2019; 
Lupaşcu and Butler, 2019; Butler et al., 2020; Lupaşcu et al., 2022; 
Schaap et al., 2023) and could give further indication on the reasons 
why the model results largely vary for threshold exceedances of MDA8 
O3 > 120 μg m− 3 in April compared to the observations. 

Ozone exceedance events in the summertime are mainly affected by 
regional photochemistry (Schaap et al., 2023). Fig. 7 shows (on average) 
lower nitrogen dioxide concentrations in the observed afternoon rush- 

Fig. 4. Modeled ozone concentration (MDA8 O3) in relation to the measured ozone levels for LOTOS-EUROS (yellow), REM-CALGRID (magenta), COSMO-MUSCAT 
(purple), WRF-Chem (blue) and the ensemble (green). Observations are shown in grey. Plotted values are binned by the measured background concentration levels of 
all available monitoring sites in Germany. Each single dot represents one observation (one day of the MDA8 O3 in the corresponding bin from one station). The box 
plot shows the mean, median, 25th and 75th percentile as well as the min and max values. Different station classes are separated out for rural (a–c) and urban (d–f) 
areas. The periods of April–June and July–September are shown in the subplots (a,d) and (b,e) as well as the winter months January–March and October–December 
in subplots (c,f). 
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Fig. 5. Same as in Fig. 3 with the information of Westerland (a, d), Augsburg (b, e) and Berlin (c, f) instead of the station average over Germany. Time series of the 
MDA8 O3 are presented in subplot (a–c). The differences for modeled and measured levels are subdivided in (d–f). 

Fig. 6. Day of the week ozone concentration for LOTOS-EUROS (yellow), REM-CALGRID (magenta), COSMO-MUSCAT (purple), WRF-Chem (blue) and the ensemble 
mean (green). Plotted values reflect the average background concentration of all available monitoring sites in Germany. Measured concentrations are indicated with 
black circles. Different station classes are separated out for rural (a–c) and urban (d–f) areas. The periods of April–June and July–September are shown in the subplots 
(a, d) and (b, e) as well as the winter months January–March and October–December in subplots (c, f). 

M. Thürkow et al.                                                                                                                                                                                                                              



Science of the Total Environment 906 (2024) 167665

11

hour peak (caused by lower emissions in urban areas) on weekends than 
during the week. This leads to a lowered titration on weekends. 
Accordingly, lower ozone concentrations can be expected during the rest 
of the week than on weekends (Koo et al., 2012) in many urban areas. In 
NOX limited regions, such as in rural areas or some urban locations, the 
ozone level can also be lowered with decreased NOX levels at daytime. 
This uncertainty to changes in NOX emissions with respect to O3 and 
their response to local photochemistry can be in principle captured by 
the models. However, addressing the weekend effect requires to analyze 
several years of data meaning that our single year simulation is not 
sufficiently long to quantify the effect. In addition, the emission infor
mation needs to be refined for this purpose as generic (monthly, weekly 
and daily) temporal profiles per sector have been used. 

3.3. Model performance evaluation by comparison with measurements 

In Fig. 8 the mean bias (MB), root mean squared error (RMSE), index 
of agreement (IOA) and temporal correlation (R) averaged over all 
German background sites are presented. The statistics for ozone and 
nitrogen dioxide concentrations were calculated for hourly and daily 
time series. For ozone, we also provide statistics of the MDA8 and the 
daytime maximum. Each indicator’s value (lowest to largest skill) has 
been color coded (from dark to light red) to improve the readability and 
comparability. 

The information presented in Fig. 8 illustrates the common behavior 
that chemistry transport models perform (slightly) better for daily than 
for hourly time series. Hourly ozone correlation coefficients for all 
models are between 0.68 and 0.80. Corresponding values of the daily 
mean time series are between 0.67 and 0.85. Higher correlation co
efficients can be observed for the daytime maximum for ozone and the 
MDA8 O3 ranging between 0.78–0.86 and 0.77–0.87, respectively. For 
the hourly time series, the models show a larger root mean squared error 
(20.4–25.4 μg m− 3) than calculated for the daily time series (14.4–21.3 
μg m− 3) as expected. The root mean squared errors for the daytime 

maxima and the MDA8 O3 are comparable to numbers we calculate for 
the daily time series (both about 16.3–20.6 μg m− 3). Modeled mean 
biases for the daily and hourly time series are comparable to each other 
(5.3–8.8 μg m− 3). The mean bias of the daytime maximum and the 
MDA8 for ozone (2.9–6.9 μg m− 3) are lower compared to the daily and 
hourly time series. For the index of agreement, we also calculate for 
hourly and daily time series quite similar numbers (0.78–0.89, each). 
The index of agreement for the daytime maximum and the MDA8 for 
ozone is about 0.83–0.91. The overall lowest model skills were calcu
lated for MDA8 O3 values above the target value of 120 μg m− 3. This can 
be shown for example for the correlation coefficients (0.53–0.61) and 
the index of agreement (0.56–0.72). We also found the largest spread 
between the models in terms of the mean error (− 14.1 to 8.2 μg m− 3) 
and root mean squared error (12.6–19.6 μg m− 3) for MDA8 O3 values 
above 120 μg m− 3. As shown in the previous section, the models tend to 
overestimate the observed ozone mass concentration at night. This re
duces the model-measurement agreement of the ozone depletion at 
night and its production afterwards. The challenging representation of 
the nighttime titration can explain the lower model performance for the 
hourly ozone assessment compared to daily time series and the daytime 
maximum or MDA8 for ozone. The low skill of the models to represent 
MDA8 O3 values above 120 μg m− 3 illustrates the challenging nature of 
chemistry transport models to capture peak ozone concentrations or in 
fact episodes. 

For the nitrogen dioxide concentration, the models show consistent 
results in the ranking of the model skills. For daily time series we 
calculate a mean absolute bias of 1.8 to 5.0 μg m− 3, a root mean squared 
error between 7.1 and 9.0 μg m− 3, an index of agreement of about 
0.57–0.78 and 0.43–0.71 for the correlation coefficient. As expected, the 
performances for the hourly time series are lower compared to the daily 
time series (Fig. 8). LOTOS-EUROS is overestimating the measured NO2 
levels on average, whereas the other model members simulate lower 
nitrogen dioxide concentrations than observed. 

The mean model-measurement agreement and skill for the calculated 

Fig. 7. Same as in Fig. 6 with information given for the nitrogen dioxide concentration.  
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statistics is often highest for the model ensemble, calculated as a simple 
four model mean, for ozone as well as for nitrogen dioxide. Fig. 8 shows 
that the ensemble mean almost always ranks highest for correlation and 
index of agreement. Error statistics for mean bias and root mean squared 
error are also low and often outperform most of the individual ensemble 
members. Even the performance for MDA8 O3 values above 120 μg m− 3 

is higher than for the single models. 

3.4. Air quality model benchmarking following FAIRMODE 

Fig. 9 summarizes the air quality model benchmarking following 
guidelines within FAIRMODE for ozone and nitrogen dioxide. We found 
that for ozone all four models fulfill the modeling quality objectives 
(MQOs) for annually averaged values and for time series of the MDA8, at 
all German background locations as well as in each subclass (MQI ≤ 1 for 
90 % of analyzed stations; indicated with green boxes). Note that the 
MQIs in rural areas are substantially lower (yearly: 0.24–0.45; MDA8 
O3: 0.42–0.58) than in the urban background (yearly: 0.58–0.66; MDA8 
O3: 0.52–0.62). We found that the MQIs for the annual assessment are 
often larger than MQI values for time series of the MDA8 in urban areas. 
This can be simply explained as the measurement uncertainty for the 
annual assessment is smaller as opposed to time series of the MDA8. In 
contrast, for rural and suburban areas the MQIs for annual averaged 
values are lower for most of the model results. 

Modeling performance indicators (MPIs) for ozone with respect to 
bias, correlation, standard deviation and high percentile values were 
also calculated. MPI values with respect to bias (MPIBias) for all German 

background sites are similar between all model systems (0.26–0.32). 
Values found in the urban background are larger (0.31–0.35) than 
shown for the rural area (0.12–0.24). Largest differences for MPIs of the 
ozone assessment between the models were calculated for the correla
tion, the standard deviation and the representation of high percentile 
values. We found that the models largely vary in terms of correlation for 
high ozone concentrations, illustrated by MPIR values between 0.17 and 
0.32. We also identified differences between the models for MPIσ values 
of about 0.11–0.34, that reflects the lower season-to-season variation for 
the models applied. 

Similar to ozone, we found for NO2 that the annual averaged values 
of the MQI are larger in the urban background than in rural areas 
compared to input data for time series (for NO2, hourly values). All four 
models as well fulfill the MQI for nitrogen dioxide of the hourly 
assessment for all German background locations and their split into sub- 
categories for urban to rural sites. Except for LOTOS-EUROS, the MQI for 
annual averaged values of nitrogen dioxide is not fulfilled by the models 
in the urban background (MQI > 1; indicated with red boxes). However, 
the parameters for the calculation of the MQI on annual basis are still 
under discussion in FAIRMODE. Nevertheless, the MPIs for nitrogen 
dioxide can all be fulfilled for most of the applied models. COSMO- 
MUSCAT in addition misses the criteria for high percentile values for 
all background stations and for the urban and suburban regions. 

In agreement to the performance evaluation presented in the previ
ous section, the result of the ensemble mean is often more reliable than 
the single ensemble members and ranks lowest in terms of numbers for 
the MQIs and the MPIs for ozone as well as for nitrogen dioxide. All MQI 

Fig. 8. Statistics for ozone (a) and nitrogen dioxide (b). The calculated values of the mean bias (MB), root mean squared error (RMSE), index of agreement (IOA) and 
correlation coefficient (R) reflect the average over all available background sites. All statistics were calculated for hourly and daily input data. For ozone the MDA8 
O3, MDA8 O3 > 120 μg m− 3 and daytime maximum is shown. The model skill has been color coded (from dark to light red: lowest to highest skill) to improve the 
readability and comparability of each statistical index. 
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and MPI values as calculated and presented for the ensemble mean are 
fulfilling the MQO and MPC, respectively. 

Table 4 provides statistical information on exceedances for MDA8 O3 
above 120 μg m− 3 using false alarms (FA), missed alarms (MA), good 
values above (GA+) and below (GA− ) the threshold as well as the 
probability of detection (POD) and the success ratio (SR) for German 
background sites differentiated per station type and model. We found 
that on average all models lack performance capturing exceedances of 
MDA8 O3 above 120 μg m− 3. The number of false (248–3,188) and 
missed alarms (1,928–4,273) largely varies between the models and are 

large compared to the number of good values above the threshold 
(1,431–3,776) for all German background sites. The averaged model’s 
performance is expressed by both, the probability of detection (POD) 
and the success ratio (SR). For all German sites, we calculate numbers of 
the probability of detection ranging between 25 and 66 % and a success 
ratio of about 54 to 85 %. REM-CALGRID shows by far the largest SR (85 
%), but also the lowest POD (25 %). The other three ensemble members 
show a very consistent picture in the ranking of the SR (54–65 %) and 
the POD (57–66 %). Statistics calculated for the ensemble mean are 
biased to the lowest model performance and thus show high values for 

Fig. 9. Summary of indicators for air quality model benchmarking following the Air Quality Directive 2008/50/EC (AQD) from FAIRMODE. The modeling quality 
indicator (MQI) and the modeling performance indicators (MPIs) were calculated for ozone (a) and nitrogen dioxide (b). Statistics for the MQI were calculated 
separately, for yearly averaged model results (Yearly) as well as for hourly (Hourly, nitrogen dioxide) and the MDA8 O3 (MDA8, ozone) input data. The MPIs are 
calculated in relation to the temporal variability and show modeled discrepancies for the bias (Bias), correlation (R), standard deviation (Sigma) and high percentile 
values (Perc). The indicators are calculated for all available background sites in Germany (All) or their selection of site classes (Urban, SubUrban, Rural). The model 
skill has been color coded (from light to dark green: lowest to highest skill) to improve the readability and comparability of each statistical index. Red color-coded 
boxes are used to indicate that the modeling quality objective (MQO) or modeling performance criteria (MPC) are not fulfilled. 

Table 4 
Threshold exceedance events of MDA8 O3 > 120 μg m− 3 as total of all background stations used, per model and station type (good values below the threshold: GA− ; 
good values above the threshold: GA+; missed alarms: MA; false alarms: FA; probability of detection: POD; success ratio: SR).  

Period Site class GA− GA+ MA FA POD SR 

LOTOS-EUROS All  77,992  3,438  2,266  2,608  0.60  0.57 
Rural  23,927  1,135  798  710  0.59  0.62 
Suburban  23,550  1,074  669  785  0.62  0.58 
Urban  30,515  1,229  799  1,113  0.61  0.52 

REM-CALGRID All  80,352  1,431  4,273  248  0.25  0.85 
Rural  24,580  396  1,537  57  0.20  0.87 
Suburban  24,284  445  1,298  51  0.26  0.90 
Urban  31,488  590  1,438  140  0.29  0.81 

COSMO-MUSCAT All  77,412  3,776  1,928  3,188  0.66  0.54 
Rural  23,856  1,201  732  781  0.62  0.61 
Suburban  23,354  1,156  587  981  0.66  0.54 
Urban  30,202  1,419  609  1,426  0.70  0.50 

WRF-Chem All  78,862  3,237  2,467  1,738  0.57  0.65 
Rural  24,314  962  971  323  0.50  0.75 
Suburban  23,773  1,050  693  562  0.60  0.65 
Urban  30,775  1,225  803  853  0.60  0.59 

ENSEMBLE All  79,551  2,906  2,798  1,049  0.51  0.73 
Rural  24,427  873  1,060  210  0.45  0.81 
Suburban  24,033  901  842  302  0.52  0.75 
Urban  31,091  1,132  896  537  0.56  0.68  
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the success ratio (73 %) but a low probability of detection (51 %) for all 
German background sites. We also noticed that the values of the POD are 
larger in the urban background than in rural areas. Vice versa, the SR is 
larger in the rural background. 

In FAIRMODE it has already been stated that large inconsistencies 
may occur for different indicators depending on whether time series 
(daily/hourly) or annual averaged values are included in the analysis 
(Monteiro et al., 2018). Following Monteiro et al. (2018), the MQO for 
hourly or daily time series is often attained, whereas it is not the case for 
annual values. We could show that all models fulfill the quality stan
dards set by the FAIRMODE guideline values for annual averages as well 
as for time series in the background locations, whereas for specific re
gions (e.g., rural vs. urban areas) the model performance can differ. The 
capability to reproduce extreme events in model intercomparison and 
evaluation studies is often ignored as many times only averaged values 
were obtained or only high percentile values were investigated (Mon
teiro et al., 2018). We therefore also focused on threshold exceedances 
as recommended by FAIRMODE and which are typically highly coherent 
in time and space over scales of hundreds of kilometers (Schnell et al., 
2015; Carro-Calvo et al., 2017). Regional models are most suited to 
simulate human exposure to ozone events when the grid resolution is 
considering the spatial extent of the urban background in the region of 

interest (Kuik et al., 2016), while for simulation of large-scale ozone 
exceedance events in the rural background in Europe, grid resolutions 
between 10 and 20 km have been shown to be optimal (Schaap et al., 
2015). However, in our study we could show that the representation of 
ozone threshold exceedance events in urban areas for MDA8 O3 > 120 
μg m− 3 is limited even on a 2 × 2 km2 scale. 

3.5. Dynamic (ozone) model evaluation 

As introduced, ozone is highly correlated to temperature which is an 
important driver especially during ozone episodes. In Fig. 10 we show 
the common relation that higher ozone concentrations occur more often 
during warmer weather conditions, while at colder temperatures the 
ozone concentrations more likely remain low. Due to the physical 
relation between the daytime maxima of temperature and their corre
sponding humidity, lower levels of the relative humidity are more often 
connected to higher ozone concentrations and vice versa. 

Fig. 10 shows that the ensemble mean reports a good agreement of 
the measured concentration in relation to temperature for April–June. 
Largest differences to the observed ozone-temperature dependence were 
found for July–September. In July–September, the measured ozone 
levels for temperatures lower than ~18 ◦C are biased high for the 

Fig. 10. Ozone concentration (MDA8 O3) in relation to temperature (a–d) and humidity (e–h) for LOTOS-EUROS (yellow), REM-CALGRID (magenta), COSMO- 
MUSCAT (purple), WRF-Chem (blue) and the ensemble (boxplots). Plotted values reflect the average background concentration of all available monitoring sites 
in Germany. Measured concentrations are indicated with black circles. Box plots of the ensemble show the mean, median, 25th and 75th percentile as well as the two 
times standard deviation as min and max. Mean values are used for the ensemble members and the measurements. The periods of April–June and July–September are 
shown in the subplots (a, e) and (b, f) as well as the winter month January–March & October–December in subplots (c, g). The relation to temperature and humidity 
for exceedances above the MDA8 O3 target value of 120 μg m− 3 are shown in subplots (d) and (h). 
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ensemble mean and for all models. In winter, all models and the 
ensemble mean are biased high for temperatures higher than ~14 ◦C. 
Differences between urban and rural sites are on average smaller 
compared to seasonal deviations (see supplementary material). 

However, we also observed a large spread for all models in their 
ozone sensitivity to different temperature regimes. The ozone temper
ature dependence for temperatures higher than ~26 ◦C in April–Sep
tember has been well captured by WRF-Chem and LOTOS-EUROS. For 
COSMO-MUSCAT and WRF-Chem we observed good agreement 
capturing the ozone sensitivity to temperature for temperatures lower 
than ~18 ◦C in April–June. In winter, COSMO-MUSCAT is in good 
agreement with observed concentrations for temperatures lower than 
~14 ◦C. On the other hand, COSMO-MUSCAT shows on average larger 
ozone sensitivity to temperature for warmer conditions in spring- and 
summertime. Vice versa, the lowest sensitivity of ozone to temperature 
was found for REM-CALGRID. This too high and too low sensitivity to 
temperature observed for COSMO-MUSCAT and REM-CALGRID causes 
an overestimation (COSMO-MUSCAT) and underestimation (REM- 
CALGRID) of the ozone levels for temperatures higher than ~26 ◦C in 
spring- and summertime. For temperatures lower than ~14 ◦C and ~18 
◦C in April–June, we observed slightly biased high ozone levels for REM- 
CALGRID and for LOTOS-EUROS. For colder conditions in winter, we 
also observed high biased ozone concentrations for LOTOS-EUROS, 
WRF-Chem and REM-CALGRID. 

The observed timeseries show values of MDA8 O3 just over 120 μg 
m− 3 already in the temperature range from ~15 to ~24 ◦C which are 
systematically underestimated by all models (Fig. 10). LOTOS-EUROS 
comes closest to covering MDA8 O3 > 120 μg m− 3 for temperatures 
lower than ~24 ◦C. REM-CALGRID captures the ozone-temperature 
dependence for MDA8 O3 > 120 μg m− 3 to a fairly large extent but is 
on average biased low as well. The models show a similar ozone 
temperature-dependence for temperatures higher than ~28 ◦C. How
ever, temperatures at which the MDA8 O3 typically starts to rise largely 
differ between the models (~22–26 ◦C) and the observations (~30 ◦C). 
COSMO-MUSCAT shows the most pronounced ozone temperature 
sensitivity and therefore the largest underestimation for temperatures 
lower than ~24 ◦C and high biased MDA8 O3 > 120 μg m− 3 for tem
peratures larger than ~30 ◦C. 

In Table 5 we present the temperature increase per Celsius between 
~21 ◦C and ~31 ◦C. The ensemble mean and nearly all models under
estimate the observed ozone dependence to temperature in April–June 
and July–September for all locations. Nevertheless, the higher temper
ature sensitivity in July–September (OBS: 4.3 μg m− 3 ◦C− 1; ENSALL: 3.5 
μg m− 3 ◦C− 1) compared with April to June (OBS: 3.1 μg m− 3 ◦C− 1; 
ENSALL: 2.9 μg m− 3 ◦C− 1) is captured by most of the models. All models 
also capture the observed lower ozone sensitivity to temperature for 
urban areas compared to rural stations in April–June and vice versa in 
July–September (see Table 5). For MDA8 O3 > 120 μg m− 3, all models 
show a too large ozone dependence on temperature (OBSALL: 0.8 μg m− 3 

◦C− 1; ENSALL: 2.8 μg m− 3 ◦C− 1), where REM-CALGRID comes closest 
covering the temperature increase per 10 ◦C for MDA8 O3 > 120 μg m− 3. 

In Fig. 10 we show the sensitivity to the relative humidity and 
observed consistent results with an overall good model measurement 

agreement for all models. The models slightly overestimate the ozone 
concentrations for humid conditions equal to a relative humidity larger 
than ~68 % in April–June and larger than ~64 % in July–September. 
Largest high biased concentrations for humid conditions have been 
found for COSMO-MUSCAT in July–September and for REM-CALGRID 
in winter. Except for LOTOS-EUROS, in April–June the models are 
also biased low for a relative humidity lower than ~28 %. MDA8 O3 
values above 120 μg m− 3 are biased low as well for a relative humidity 
lower than ~28 % for all models. For REM-CALGRID a good agreement 
to the ozone-humidity dependence is observed. However, similar to 
results shown before for the ozone sensitivity to temperature, a too low 
modeled concentration for MDA8 O3 > 120 μg m− 3 is observed. 

In Otero et al. (2018) the influence of meteorology on ozone has been 
calculated for a model ensemble and the observations using a multiple 
linear regression analysis on a multi-decadal time scale. The study 
showed that the models can reproduce the temperature (Tmax) response 
to a fairly large extent. We precise this finding and argue that the 
observed ozone-temperature dependence shows highest agreement for 
warmer conditions, but the models can also largely vary in the modeled 
ozone sensitivity to temperature. In contrast to our results, Otero et al. 
(2018) identified a better model-measurement agreement for summer 
compared to spring. We found large season-to-season differences and 
high biased ozone levels for July–September that seem to be connected 
with moderate temperatures and thus a higher relative humidity during 
the summertime, especially at night. Following Otero et al. (2018) the 
relation between humidity and ozone is more difficult to capture. We 
found an overall good agreement of the modeled ozone-humidity 
dependence. However, the models largely underestimate high ozone 
concentrations (MDA8 O3 > 120 μg m− 3) for dry conditions during 
springtime. We speculate that this could be connected with an insuffi
cient representation of modeled deposition velocities covering vegeta
tive water stress and low sensitivity of NOX and BVOC emissions (e.g., 
Churkina et al., 2017; Lin et al., 2020). 

4. Summary & conclusion 

We have successfully compared and evaluated the performance of 
four regional chemistry transport models and their ensemble. Our work 
shares similar features with previous multi-model intercomparison 
studies for ozone but focuses on a higher grid resolution and performs a 
national scale quality assessment, which might be more relevant with a 
future revision of the European air quality directive. 

The results demonstrate that all models satisfy the modeling quality 
objectives and criteria (MQO/MQC) set by the FAIRMODE initiative for 
every modeling quality and performance indicator (MQI/MPI) for 
annual averaged ozone concentrations as well as for time series of the 
MDA8 O3. All models showed good performance of the operational 
evaluation using standard statistical indicators such as bias, correlation 
or for high percentile values. The analysis of the model skills demon
strates better performance in rural areas than in the urban background 
and for springtime compared to summertime. We also showed an 
improved performance for the ensemble over the individual model 
participants. Despite the high model-measurement agreement, the 

Table 5 
Dependence of ozone concentration on temperature, for ~21 ◦C to ~31 ◦C [μg m− 3 ◦C− 1].   

Site class Obs. LOTOS-EUROS REM-CALGRID COSMO-MUSCAT WRF-Chem ENSEMBLE 

April–June All  3.06  2.71  1.65  5.10  2.72  2.86 
Rural  3.60  3.08  1.82  5.14  2.80  3.06 
Urban  2.88  2.47  1.43  5.05  2.62  2.68 

July–September All  4.29  3.77  2.56  4.98  3.06  3.45 
Rural  4.13  3.38  2.44  4.78  2.80  3.17 
Urban  4.47  4.06  2.66  5.22  3.34  3.68 

MDA8 O3 > 120 μg m− 3 All  0.82  1.87  1.30  5.57  2.97  2.82 
Rural  1.08  1.97  1.32  4.77  2.61  2.66 
Urban  0.69  1.77  1.25  6.03  3.23  2.90  
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individual models and their ensemble show room for improvement at 
simulating threshold exceedances for MDA8 O3 above 120 μg m− 3. Here, 
we compute high values for missed alarms and false alarms. We also 
found rather low model measurement agreement for observed lower 
ozone concentrations at night, which is likely related to difficulties in 
simulating the stable nocturnal boundary layer. 

A novel feature of this study is the dynamic evaluation of modeled 
ozone with respect to temperature. In general, the models correctly 
reproduced the observed higher sensitivity of ozone with respect to 
temperature in summer than in springtime, which is linked to overall 
higher local photochemical production of ozone in summer. The models 
also correctly captured the differences in the temperature sensitivity of 
ozone between rural and urban areas in both spring and summer sea
sons, with a lower temperature sensitivity in urban areas in springtime 
and a higher sensitivity in summertime, showing that the 2 × 2 km2 

model resolution used in this study is adequate for simulating the dy
namic response of ozone to temperature in urban background areas. 
Despite capturing the observed spring to summer and urban to rural 
differences in the temperature sensitivity of ozone, there was still a large 
spread in the modeled temperature sensitivities. The sensitivity of ozone 
to temperature also depends on the ratio of NOX and BVOC. For example, 
in NOX rich urbanized regions the temperature-sensitivity to ozone is 
higher than in NOX limited regions (Otero et al., 2021). Future work 
should focus on the representation of temperature sensitive processes in 
models, such as BVOC and nitrogen oxide emissions. 

In general, the models underestimated the observed temperature 
sensitivity of ozone in summer, despite showing high bias in simulated 
ozone concentrations compared with the measurements. Both, the high 
bias and the underestimated temperature sensitivity can be linked to a 
systematic overestimation of ozone concentrations in the 60–80 μg m− 3 

range, which make up most of the observed ozone concentrations in 
summer and tend to occur at moderate temperatures. The models also 
show a high bias with respect to observations in the same concentration 
range in spring. However, this is not reflected in the overall springtime 
model bias due to a systematic underestimation of higher values (over 
100 μg m− 3) in spring, which tend to occur at relatively low tempera
tures (below 25 ◦C) compared with similar exceedance events in sum
mer. The missed springtime exceedance events and the general 
overestimation of concentrations in the 60–80 μg m− 3 range could be 
linked to deficiencies in the representation of background ozone, 
including long-range transport, which can be further addressed with 
source apportionment techniques and validation at the European scale. 
An important caveat in this context is that these results are based only on 
observations and model simulations for the year of 2019. Future work 
should focus on longer periods to determine whether these results can be 
generalized to longer timeframes. 

In this study we focused on an operational and dynamic evaluation of 
four chemistry transport models for ozone in Germany. The dynamic 
evaluation would benefit from an extension to a decadal time scale as 
shown e.g., by Colette et al. (2017) and Banzhaf et al. (2015). We used a 
poor man’s ensemble to assess the added value of the combined infor
mation in the ensemble. The evaluation of larger ensembles of chemistry 
transport models is currently taking place within the Copernicus At
mosphere Monitoring Service, enabling it to address additional 
ensemble properties which are not covered here. An important next step 
for the work presented here is to diagnose the reasons for the mis
matches with observations and differences between the models. Such 
diagnostic evaluation requires investigating the process descriptions in 
more detail. As the uncertainties related to the biogenic emissions and 
the dry deposition parameterizations are large (e.g., Im et al., 2015b), 
we recommend to focus on the representation of these process de
scriptions by evaluation of dedicated simulations for research cam
paigns providing the relevant process information. 
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Loreto, F., Niinemets, Ü., Palmer, P.I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., 
Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister- 
Boltenstern, S., Williams, J., O’Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., 
Chaumerliac, N., Erisman, J.W., 2009. Atmospheric composition change: 
ecosystems–atmosphere interactions. Atmos. Environ. 43, 5193–5267. https://doi. 
org/10.1016/j.atmosenv.2009.07.068. 

Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe, C., Schulz, M., Benedictow, A., 
Griesfeller, J.J., Janssens-Maenhout, G., Carmichael, G., Fu, J., Dentener, F., 2017. 
Technical note: coordination and harmonization of the multi-scale, multi-model 
activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, 
boundary conditions, and model~output~formats. Atmos. Chem. Phys. 17, 
1543–1555. https://doi.org/10.5194/acp-17-1543-2017. 

Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C., 1989. A photochemical kinetics 
mechanism for urban and regional scale computer modeling. J. Geophys. Res. 
Atmos. 94, 12925–12956. https://doi.org/10.1029/JD094iD10p12925. 

Gong, S.L., Barrie, L.A., Blanchet, J.-P., 1997a. Modeling sea-salt aerosols in the 
atmosphere: 1. Model development. J. Geophys. Res. Atmos. 102, 3805–3818. 
https://doi.org/10.1029/96JD02953. 

Gong, S.L., Barrie, L.A., Prospero, J.M., Savoie, D.L., Ayers, G.P., Blanchet, J.-P., 
Spacek, L., 1997b. Modeling Sea-salt aerosols in the atmosphere: 2. Atmospheric 
concentrations and fluxes. J. Geophys. Res. Atmos. 102, 3819–3830. https://doi. 
org/10.1029/96JD03401. 

Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., 
Eder, B., 2005. Fully coupled “online” chemistry within the WRF model. Atmos. 
Environ. 39, 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027. 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. 
Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions 
of gases and aerosols from nature). Atmos. Chem. Phys. 6 https://doi.org/10.5194/ 
acp-6-3181-2006. 

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., 
Wang, X., 2012. The model of emissions of gases and aerosols from nature version 
2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic 
emissions. Geosci. Model Dev. 5, 1471–1492. https://doi.org/10.5194/gmd-5-1471- 
2012. 

Henneman, L.R.F., Liu, C., Hu, Y., Mulholland, J.A., Russell, A.G., 2017. Air quality 
modeling for accountability research: operational, dynamic, and diagnostic 
evaluation. Atmos. Environ. 166 https://doi.org/10.1016/j.atmosenv.2017.07.049. 

Hogrefe, C., Liu, P., Pouliot, G., Mathur, R., Roselle, S., Flemming, J., Lin, M., Park, R.J., 
2018. Impacts of different characterizations of large-scale background on simulated 
regional-scale ozone over the continental United States. Atmos. Chem. Phys. 18, 
3839–3864. https://doi.org/10.5194/acp-18-3839-2018. 

HTAP, 2010. Hemispheric Transport of Air Pollution 2010. United Nations. 
Huang, M., Carmichael, G.R., Pierce, R.B., Jo, D.S., Park, R.J., Flemming, J., Emmons, L. 

K., Bowman, K.W., Henze, D.K., Davila, Y., Sudo, K., Jonson, J.E., Tronstad Lund, M., 
Janssens-Maenhout, G., Dentener, F.J., Keating, T.J., Oetjen, H., Payne, V.H., 2017. 
Impact of intercontinental pollution transport on North American ozone 
airpollution: an HTAP phase 2 multi-model study. Atmos. Chem. Phys. 17, 
5721–5750. https://doi.org/10.5194/acp-17-5721-2017. 

Hundsdorfer, W., Koren, B., vanLoon, M., Verwer, J.G., 1995. A positive finite-difference 
advection scheme. J. Comput. Phys. 117, 35–46. https://doi.org/10.1006/ 
jcph.1995.1042. 

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., 
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